

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: Control Systems

III Year : V Semester

Unit II – Time Response Analysis

Topic : Routh-Hurwitz Criterion

19BMT301/CS/Dr.R.Karthick/HoD/BME

Introduction

Routh's stability criterion allows the determination of whether there are any roots of the characteristic equation with positive real parts and, if there are, the number of these roots without actually finding the roots.

The necessary but not sufficient condition for a characteristic equation ٠

$$\mathbf{D}(s) = \mathbf{a_n}s^n + \mathbf{a_{n-1}}s^{n-1} + \dots + \mathbf{a_1}s + \mathbf{a_0} = 0$$

- to have all its roots with negative real parts is that all of the coefficients a, must • exist and have the same sign.
- If the characteristic equation fails to meet the above condition, then the system • is not stable.

19BMT301/CS/Dr.R.Karthick/HoD/BME

Introduction

- If Hurwitz condition is satisfied, then Routh's stability criterion must be used to determine the stability of the system.
- To be able to apply Routh's criterion, Routh's array must be constructed.
- Begin by labeling the rows with powers of s from the highest power of the denominator polynomial to s0
- List in the first row every other coefficient starting with the one of the highest power of s.
- List in the second row coefficients that were skipped in the first row.
- Complete the rest of the table.

9BMT301/CS/Dr.R.Karthick/HoD/BME

Vision Title 3

Routh-Hurwitz Criterion

R(s)	$N(a_4s^4 + a_3s^3 + a_3s^3$	$\frac{(s)}{a_2s^2 + a_1s + a_0}$	C(s)					
Initial layout for Routh table								
s ⁴	a_4	<i>a</i> ₂	a_0					
s ³	a_3	a_1	0					
s^2								
s ¹								
0								

		F	lou					
((How to comp							
s^n	$ a_n $	a_{n-2}	a_{n-}					
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-}					
s^{n-2}	b_1	<i>b</i> ₂	b_3					
s^{n-3}	c_1	<i>c</i> ₂	сз					
ŧ	:	:						
s ²	k_1	k_2						
s^1	l_1							
s^0	m_1							
	,							

19BMT301/CS/Dr.R.Karthick/HoD/BME

4

Classification of Stability

Routh-Hurwitz criterion					The
	I				cor
s^n	$ a_n $	a_{n-2} a	$n-4$ a_{n-6} \cdots		equ
s^{n-1}	a_{n-1}	a_{n-3} a	$n-5$ a_{n-7} \cdots		nor
s^{n-2}	b_1	b_2 b_3	$b_4 \cdots$		nee
s^{n-3}	C1	C_{2}	c_{Λ}		ele
	, °T	• 2 •) [°] 4		Ro
:		:	The number of roots		sigi
s^{2}	$ k_1 $	k_2	in the open right half-plane		16 11
s^1	$ l_1$		is equal to	•	IT th
s^0	m_1		the number of sign changes		hav
	-	l	in the first column of Routh array.		nur

he elements of the first column ve different signs, then the mber of sign changes is equal the number of roots with to positive real parts.

9BMT301/CS/Dr.R.Karthick/HoD/BME

and sufficient necessary e ndition for a characteristic uation to have all its roots with gative real parts is that the ments of the first column of the uth's array to have the same n.