

Lead – Acid Storage Cell

- A Lead-acid storage cell is a secondary battery, which can operate as a voltaic cell and as an electrolytic cell.
- When it acts as a voltaic cell, it supplies electrical energy and becomes run down.
- When it is recharged, the cell operates as an electrochemical cell.

Construction and Working:

- A lead acid storage cell consists of a number of voltaic cells (3 to 6) connected in series to get 6 to 12 V battery.
- In each cell, a number of Pb plates, used as anodes are connected in parallel
- A number of PbO2 plates, used as cathodes are connected in parallel. The plates are separated by insulators like rubber or glass fibre.
- The entire combination is immersed in dil.H2SO4. (38% by mass) having a density of 1.30 gm/ml.

The cell is represented as:

Pb | PbSO₄ || H2SO₄ || PbSO₄ | PbO₂ | Pb

Lead Storage Cell

Working (Discharing)

Anodic reaction: Lead is oxidized to Pb^{2+} ions and gives two electron, which further combines with SO_4^{2-} to form insoluble $PbSO_4$. $Pb_{(s)} + SO_4^{2-} \longrightarrow PbSO_{4(s)} + 2e-$

Cathodic Reaction: PbO_2 is reduced to Pb^{2+} ions, which further combines with SO_4^{2-} to form insoluble $PbSO_4$.

 $PbO_{2(s)} + 4H^{+} + SO^{2-} + 2e^{-} \longrightarrow PbSO_{4(s)} + 2H_2O$

Overall cell reaction during (discharging)

$Pb(s) + PbO_{2(s)} + 2H_2SO_4(aq) - d - isc - harg - ing \rightarrow PbSO_{4(s)} + 2H_2O + energy$

From the above cell reactions, it is clear that PbSO4 is precipitated at both the electrodes and the concentration of H2SO4 decreases. So, the battery needs recharging.

Overall cell reaction during recharging

The cell can be recharged by passing electric current in the opposite direction. The electrode reaction gets reversed. As a result, Pb is deposited on anode and PbO2 on the cathode. The concentration of H2SO4 also increases.

 $2PbSO_{4(s)} + 2H_2O + Energy \longrightarrow Pb(s) + PbO_{2(s)} + 2H_2SO_{4(aq)}$

Advantages of Lead–Acid batteries

- 1. It is made easily.
- 2. It produces very high current.
- 3. The self discharging rate is low.
- 4. It works effectively even at low temperatures.

Disadvantages :

- 1. Recycling of this battery causes environmental hazards.
- 2. Mechanical strain and normal bumping reduces battery capacity.

Uses

- 1. Lead acid batteries are used in cars, buses, trucks etc.
- 2. It is used in gas engine ignition, telephone exchanges, and power stations hospitals.
- 3. IT industry, educational institutions, laboratories etc.