

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB301 – ANALOG AND DIGITAL COMMUNICATION

III B.E. ECE, / V SEMESTER

UNIT 5 – INFORMATION THEORY AND ERROR CONTROL CODING

TOPIC – ERROR CONTROL CODING

ERROR CONTROL CODING

Purpose

• To detect and correct error(s) that is introduced during transmission of digital signal.

INTRODUCTION

Error control coding:

Extra bits(one or more) are added to the data at the transmitter (redundancy) to permit error detection or correction at the receiver.

Classification of codes:

- 1) Error detecting codes: capable of only detecting the errors.
- 2) Error correcting codes: capable of detecting as well as correcting the errors.

CLASSIFICATION OF ERROR CONTROL CODES

Based upon memory:

Block code: does not need memory.

Convolutional code: needs memory.

Based upon linearity:

Linear code

Nonlinear code

TYPES OF ERROR CONTROL

 Automatic repeat request(ARQ) technique: receiver can request for the retransmission of the complete or a part of message if it finds some error in the received message. This requires an additional channel called feedback channel to send the receiver's request for retransmission.

Appropriate for

- Low delay channels
- Channels with a return path

Not appropriate for delay sensitive data, e.g., real time speech and data

TYPES OF ERROR CONTROL

- Forward error correction(FEC) technique: no such feedback path and there is no request is made for retransmission.
 - Coding designed so that errors can be corrected at the receiver
 - Appropriate for delay sensitive and one-way transmission (e.g., broadcast TV) of data
 - Two main types, namely block codes and convolutional codes

DRAWBACKS OF CODING TECHNIQUES

Higher transmission bandwidth.

System complexity.

IMPORTANT DEFINITIONS

- Code word: The code word is the n bit encoded block of bits. It contains message bits and parity or redundant bits.
- Code rate/code efficiency: It is defined as the ratio of the number of message bits(k) to the total number of bits(n) in a code word.

Code rate
$$(r) = k/n$$

 Hamming distance: number of locations in which their respective elements differ.

e.g., 10011011

11010010 have a Hamming distance = 3

Alternatively, we can compute by adding code words (mod 2) =01001001 (now count up the ones)

 Hamming weight of a code word: It is defined as the number of nonzero elements in the code word.

TRANSMISSION MODEL

Definition: A code is said to be linear if any two code words in the code can be added in modulo 2 addition to produce a third code word in the code.

Code word length= n bits

m _{0,} m _{1,} m ₂ m _{k-1}	C _{0,} C _{1,} C ₂ C _{n-k-1}
k message bits	(n-k) parity bits

(n,k) linear block code

- A vector notation is used for the message bits and parity bits
 - message bit m = $[m_0 m_1 m_{k-1}]$
 - Parity bit c = $[c_0 c_1.....c_{n-k-1}]$

--The code vector can be mathematically represented by X=[M:C]

M= k message vector

C= (n-k) parity vector

 A block code encoder generates the parity vector or parity bits required to be added to the message bits to generate the code word. The code vector x can also be represented as

$$[X]=[M][G]$$

X=code vector of (1×n) size

M=message vector of (1×k) size

G=generator matrix of (k×n) size

 The generator matrix depends on the type of linear block code used and is defined as

$$G = [I_k \mid P]$$

Where $I_k = (k \times k)$ identity matrix

P= k×(n-k) coefficient matrix

$$P = \begin{bmatrix} p_{00} & p_{10} & \dots & p_{n-k-1,0} \\ p_{01} & p_{11} & \dots & p_{n-k-1,1} \\ \vdots & \vdots & \ddots & \vdots \\ p_{0,k-1} & p_{1,k-1} & \dots & p_{n-k-1,k-1} \end{bmatrix}_{k \times (n-k)}$$

The parity vector can be obtained as

$$\begin{bmatrix} C_0 & C_1 \cdots C_{n-k-1} \end{bmatrix} = \begin{bmatrix} m_0 & m_1 \cdots m_{k-1} \end{bmatrix} \begin{bmatrix} p_{00} & p_{10} & \cdots & p_{n-k,0} \\ p_{01} & p_{11} & \cdots & p_{n-k,1} \\ \vdots & \vdots & \ddots & \vdots \\ p_{0,n-k} & p_{1,k-1} & \cdots & p_{n-k,k-1} \end{bmatrix}$$

PARITY CHECK MATRIX (H)

 There is another way of expressing the relationship between the message bits and the parity bits of a linear block codes.
 Let H denote an (n-k)×n matrix defined as

$$H = [P^T \mid I_{n-k}]$$

Where P_{-}^{T} (n-k)×k matrix representing the transpose of the coefficient matrix P

$$I_{n-k} = (n-k) \times (n-k)$$
 identity matrix

ERROR DETECTION AND CORRECTION CAPABILITY OF LINEAR BLOCK CODE

 Hamming distance determines the error detecting and correcting capability of a linear block code.

ERROR DETECTION AND CORRECTION CAPABILITY OF LINEAR BLOCK CODE

The maximum number of detectable errors is

$$d_{\min} - 1$$

The maximum number of correctable errors is given by

$$t = \left| \frac{d_{\min} - 1}{2} \right|$$

where d_{min} is the minimum Hamming distance between 2 code words and $\lfloor \cdot \rfloor$ means the largest integer less than or equal to the enclosed quantity.

PROPERTIES OF G AND H MATRIX

•
$$GH^T = 0$$

•
$$HG^T = 0$$

•
$$XH^{T} = 0$$

