

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

III YEAR/ V SEMESTER

2 - BIOMEDICAL SIGNAL PROCESSING

III YEAR/ V SEMESTER
 INFINITE IMPULSE RESPONSE

FILTERS

19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT

1 UNIT III INFINITE IMPULSE RESPONSE FILTERS

UNIT II INFINITE IMPULSE RESPONSE FILTERS

19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT
19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT
19BMB302 - Biomedical Signal Processing / Unit-3 Characteristics of practical frequency selective filters.
Characteristics of practical frequency selective filters.
Characteristics of commonly used analog filters.
Butterworth filters, Chebyshev filters. Characteristics of practical frequency selective filters.
Characteristics of practical frequency selective filters.
Characteristics of commonly used analog filters
Design of IIR filters from analog filters (LPF, HPF, BPF, **Butter Control in the IMPULSE RESPONSE FILTERS**
Butterworth filters, Characteristics of practical frequency selective filters.
Characteristics of commonly used analog filters
Butterworth filters, Chebyshev filters.
Design **DESIGN ON THE INFINITE IMPULSE RESPONSE FILTERS**

Characteristics of practical frequency selective filters.

Characteristics of commonly used analog filters

Butterworth filters, Chebyshev filters from analog filters (LPF **ECONSTRESS CONTREM IN INFINITE IMPULSE RESPONS**

Characteristics of practical frequency selective filters.

Characteristics of commonly used analog filters

Butterworth filters, Chebyshev filters.

Design of IIR filters f **IMPULSE RESPONSE**
 IMPULSE RESPONSE

Characteristics of practical frequency selective filters.

Characteristics of commonly used analog filters

Butterworth filters, Chebyshev filters.

Design of IIR filters from analog **EXAMPLE SERVERT SERVERT CHARGE IN UNIT II INFINITE IMPULSE R**
Characteristics of practical frequency select
Characteristics of commonly used analog fil
Butterworth filters, Chebyshev filters.
Design of IIR filters from an Characteristics of practical frequency selective filters.
Characteristics of commonly used analog filters
Butterworth filters, Chebyshev filters.
Design of IIR filters from analog filters (LPF, HPF, BPF, BRF)
Approximation Characteristics of practical frequency selective filters.
Characteristics of commonly used analog filters
Butterworth filters, Chebyshev filters.
Design of IIR filters from analog filters (LPF, HPF, BPF, BRF)
Approximation Characteristics of practical riequency selective ments
Characteristics of commonly used analog filters
Butterworth filters, Chebyshev filters.
Design of IIR filters from analog filters (LPF, HPF, BPF,
Approximation of deri

Steps to design a digital filter using Impulse Invariance method

- 1. For the given specifications, find $H_a(s)$, the transfer function of an analog filter.
- 1. For the given specifications, the $H_a(0)$, \ldots
2. Select the sampling rate of the digital filter, T seconds per sample.
- 2. Select the sampling rate of the digital means = 1.
3. Express the analog filter transfer function as the sum of single-pole filters.

$$
H_a(s) = \sum_{k=1}^N \frac{c_k}{s - p_k}
$$

$$
H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}
$$

 \mathbf{t}

$$
H_a(s) = \sum_{k=1}^{R} \frac{c_k}{s - p_k}
$$

z-transform of the digital filter by using the formula

$$
H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}.
$$
bling rates use

$$
H(z) = \sum_{k=1}^{N} \frac{T c_k}{1 - e^{p_k T} z^{-1}}
$$

19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT 46

Example 5.11 For the analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$ using impulse invariance method. Assume $T = 1$ sec. determine $H(z)$

Solution

$$
H(s) = \frac{A}{s+1} + \frac{B}{s+2}
$$

$$
H(s) = \frac{2}{s+1} - \frac{2}{s+2}
$$

$$
= \frac{2}{s-(-1)} - \frac{2}{s-(-1)}
$$

 $(s + 1)(s + 2)$

ction we can write
 $\frac{A = (s + 1)\frac{2}{(s + 1)(s + 2)}\Big|_{s = -1}}{s + 1}$
 $\frac{2}{s + 1} - \frac{2}{s + 2}$
 $\frac{2}{s - (-1)} - \frac{2}{s - (-2)}$

wariance technique we have, if
 $= \sum_{k=1}^{N} \frac{c_k}{s - p_k}$ then $H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T}$

$$
H(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k} \quad \text{then} \quad H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}
$$

$$
H(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k} \quad \text{then} \quad H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}
$$

i.e.,
$$
(s - p_k)
$$
 is transformed to $1 - e^{p_k T} z^{-1}$.
There are two poles $p_1 = -1$ and $p_2 = -2$. So

$$
H(z) = \frac{2}{1 - e^{-T}z^{-1}} - \frac{2}{1 - e^{-2T}z^{-1}}
$$

$$
H(z) = \frac{2}{1 - e^{-T}z^{-1}} - \frac{2}{1 - e^{-2T}z^{-1}}
$$

\n
$$
H(z) = \frac{2}{1 - e^{-1}z^{-1}} - \frac{2}{1 - e^{-2}z^{-1}}
$$

\n
$$
= \frac{2}{1 - 0.3678z^{-1}} - \frac{2}{1 - 0.1353z^{-1}}
$$

\n
$$
H(z) = \frac{0.465z^{-1}}{1 - 0.503z^{-1} + 0.04976z^{-2}}
$$

\n19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT 48

INSTITU

CONTRACTOR STATE STATE AND

Example 5.13 Design a third order Butterworth digital filter using impulse invariant. technique. Assume sampling period $T = 1$ sec.

Solution

filter is given by

able 5.1, for
$$
N = 3
$$
, the transfer function of a normalised Butterworth
by

$$
H(s) = \frac{1}{(s+1)(s^2 + s + 1)}
$$

$$
= \frac{A}{s+1} + \frac{B}{s+0.5+j0.866} + \frac{C}{s+0.5-j0.866}
$$
19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT

$$
A = (s + 1)\frac{1}{(s + 1)(s^{2} + s + 1)}\Big|_{s = -1} = \frac{1}{(-1)^{2} - 1 + 1} = 1
$$

\n
$$
B = (s + 0.5 + j0.866)\frac{1}{(s + 1)(s + 0.5 + j0.866)}
$$

$$
(s + 0.5 - j0.866)
$$

$$
= \frac{1}{(-0.5 - j0.866 + 1)(-j0.866 - j0.866)}
$$

$$
= \frac{1}{-j1.732(0.5 - j0.866)} = \frac{1}{-j0.866 - 1.5}
$$

$$
= \frac{-1.5 + j0.866}{3} = -0.5 + j0.288
$$

$$
C = B^* = -0.5 - j0.288
$$

\n19808302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT

Hence

$$
H(s) = \frac{1}{s+1} + \frac{-0.5 + 0.288j}{s+0.5 + j0.866} + \frac{-0.5 - 0.288j}{s+0.5 - j0.866}
$$

=
$$
\frac{1}{s-(-1)} + \frac{-0.5 + 0.288j}{s-(-0.5 - j0.866)} + \frac{-0.5 - 0.288j}{s - (-0.5 + j0.866)}
$$

$$
\text{if} \quad H(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}, \quad \text{then} \quad H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}
$$

Therefore,

impulse invariant technique
\nif
$$
H(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}
$$
, then $H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}$
\nTherefore,
\n
$$
H(z) = \frac{1}{1 - e^{-1} z^{-1}} + \frac{-0.5 + j0.288}{1 - e^{-0.5} e^{-j0.866} z^{-1}} + \frac{-0.5 - j0.288}{1 - e^{-0.5} e^{j0.866} z^{-1}}
$$
\n
$$
= \frac{1}{1 - 0.368 z^{-1}} + \frac{-1 + 0.66 z^{-1}}{1 - 0.786 z^{-1} + 0.368 z^{-2}}
$$
\n19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT 51

Example 5.15 An analog filter has a transfer function $H(s) = \frac{10}{s^2 + 7s + 10}$.
Design a digital filter equivalent to this using impulse invariant method for $T = 0.2$

Solution

Given

$$
H(s) = \frac{10}{s^2 + 7s + 10}
$$

= $\frac{-3.33}{s + 5} + \frac{3.33}{s + 2} = \frac{-3.33}{s - (-5)} + \frac{3.33}{s - (-2)}$

$$
H(s) = \frac{10}{s^2 + 7s + 10}
$$

= $\frac{-3.33}{s + 5} + \frac{3.33}{s + 2} = \frac{-3.33}{s - (-5)} + \frac{3.33}{s - (-2)}$
Using Eq. (5.81b) we have

$$
H(z) = T \left[\frac{-3.33}{1 - e^{-5T}z^{-1}} + \frac{3.33}{1 - e^{-2T}z^{-1}} \right] = 0.2 \left[\frac{-3.33}{1 - e^{-1}z^{-1}} + \frac{3.33}{e^{-0.4}z^{-1}} \right]
$$

$$
= \left[\frac{-0.666}{1 - 0.3678z^{-1}} + \frac{0.666}{1 - 0.67z^{-1}} \right]
$$

$$
= \frac{0.2012z^{-1}}{1 - 1.0378z^{-1} + 0.247z^{-2}}
$$

19BMB302 - Biomedical Signal Processing / Unit-3 / Dr. K. Manoharan, ASP / BME / SNSCT