

1

MONITORING AND CONTROL SYSTEM

Monitoring & Control System / 19ITT203- Software Engineering /K.S Mohan/ IT / SNSCT

01-11-2023

Monitoring and control systems

- Important class of real-time systems
- Continuously check sensors and take actions depending on sensor values
- Monitoring systems examine sensors and report their results
- Control systems take sensor values and control hardware actuators

Monitoring & Control System / 19ITT203- Software Engineering /K.S Mohan/ IT / SNSCT

Burglar Alarm system

- Designed to detect intrusion, unauthorized entry
- Used in residential, commercial, industrial, and military for protection against <u>burglary</u> (<u>theft</u>).

Monitoring & Control System / 19ITT203- Software Engineering /K.S Mohan/ IT / SNSCT

Burglar Alarm system

- A system is required to monitor sensors on doors and windows to detect the presence of intruders in a building
- When a sensor indicates a break-in, the system switches on lights around the area and calls police automatically
- The system should include provision for operation without a mains power supply

Monitoring & Control System / 19ITT203- Softwre Engineering /K.S Mohan/ IT / SNSCT

Burglar Alarm system

- Sensors
 - Movement detectors, window sensors, door sensors.
 - 50 window sensors, 30 door sensors and 200 movement detectors
 - Voltage drop sensor
- Actions
 - 1. When an intruder is detected, police are called automatically.
 - 2. Lights are switched on in rooms with active sensors.
 - 3. An audible alarm is switched on.
 - 4. The system switches automatically to backup power when a voltage drop is detected.

IR Movement Sensor

Door Sensor

Monitoring & Contol System / 19ITT203- Software Engineering

RT System Design Process

- 1. Identify stimuli and associated responses
- 2. Define the timing constraints associated with each stimulus and response
- 3. Allocate system functions to concurrent processes
- 4. Design algorithms for stimulus processing and response generation
- 5. Design a scheduling system to meet their deadlines
- 6. Integrate with Real Time Executives

Monitoring & Control System / 19ITT203- Software Engineering /K.S Mohan/ IT / SNSCT

Stimuli to be Processed & Responses

- Power failure
 - -Generated aperiodically by a circuit monitor.
 - –When received, the system must switch to backup power within 50 ms
- Intruder alarm
 - -Stimulus generated by system sensors
 - -Response is to call the police,
 - -switch on building lights
 - -and the audible alarm

Monitoring & Control System / 19ITT203- Software Engineering /K.S Mohan/ IT / SNSCT

Timing Requirements

Stimulus/Response	Timing requirements
Stimulus & Timing	
Power fail interrupt	must be completed within a deadline of 50 ms.
Door alarm	should be polled twice per second.
Window alarm	should be polled twice per second.
Movement detector	should be polled twice per second.
Response & Timing	
Audible alarm	should be switched on within $1/2$ second of an alarm being raised
Lights switch	should be switched on within 1/2 second of an alarm being raised
Communications	The call to the police should be started within 2 seconds of the alarm
Voice synthesiser	A synthesised message should be available within 4 seconds of an alarm
Monitoring & Control System / 19ITT203- Software Engineering /K.S Mohan/ IT /	

SNSCT

Building Monitor Process 1

// See http://www.software-engin.com/ for links to the complete // Java code for this example

class BuildingMonitor extends Thread {

BuildingSensor win, door, move ;

Siren siren = new Siren ();

```
Lights lights = new Lights ();
Synthesizer synthesizer = new Synthesizer ();
DoorSensors doors = new DoorSensors (30);
WindowSensors windows = new WindowSensors (50);
MovementSensors movements = new MovementSensors (200);
PowerMonitor pm = new PowerMonitor ();
```

```
BuildingMonitor()
```

```
// initialise all the sensors and start the processes
siren.start () ; lights.start () ;
synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;
```


Building Monitor Process 2


```
public void run () {
  int room = 0;
  while (true) {
     // poll the movement sensors at least twice per second (400 Hz)
     move = movements.getVal();
     // poll the window sensors at least twice/second (100 Hz)
     win = windows.getVal ();
     // poll the door sensors at least twice per second (60 Hz)
     door = doors.getVal () ;
     if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)
        {
           // a sensor has indicated an intruder
           if (move.sensorVal == 1)
                                            room = move.room ;
           if (door.sensorVal == 1)
                                            room = door.room;
           if (win.sensorVal == 1)
                                                        room = win.room ;
           lights.on (room); siren.on (); synthesizer.on (room);
           break;
        }
              }
  lights.shutdown (); siren.shutdown (); synthesizer.shutdown ();
  windows.shutdown (); doors.shutdown (); movements.shutdown ();
```

```
} // run
} //BuildingMonitor
```


Control System

- A burglar alarm system is primarily a monitoring system. It collects data from sensors but no real-time actuator control
- Control systems are similar but, in response to sensor values, the system sends control signals to actuators
- An example of a monitoring and control system is a system which monitors temperature and switches heaters on and off

Temperature Control System

01-11-2023

13/15

ASSESSMENT

MATCH THE FOLLOWING

Match

a. Burglar Alarm System
b. Door Sensor
c.Aperiodic Stimuli d.
e. Temperature Control System
Movement Sensor
Control System
Power Failure
Monitoring System
Periodic Stimuli

Software Engineering 6th Edition Ian Sommerville

