Approaches to Line Balancing COMSOAL & RPW

Active Learning Module 2

Dr. César O. Malavé Texas A&M University

Background Material

- Modeling and Analysis of Manufacturing Systems by Ronald G. Askin, Charles R. Standridge, John Wiley & Sons, 1993, Chapter 2.
- Manufacturing Systems Engineering by Stanley B. Gershwin, Prentice – Hall, 1994, Chapter 2.
- Any good manufacturing systems textbook which has detailed explanation on reliable serial systems.

Lecture Objectives

- At the end of this module, the students should be able to
 - Explain the approaches to line balancing
 - COMSOAL Random Sequence Generation
 - Ranked Positional Weight Heuristics
 - Solve and find the optimal solutions to line
 - balancing problems using the above techniques

Time Management

Introduction	5
Readiness Assessment Test (RAT)	5
COMSOAL Procedure	12
Spot Exercise	5
RPW Procedure	15
Team Exercise	5
Assignment	3
Total Time	50 Mins

Readiness Assessment Test (RAT)

- In a <u>layout</u>, work stations are arranged according to the general function they perform without regard to any particular product.
 - a) product, b) process, c) fixed position, d) storage
- 2. A product layout is more suited to situations where product demand is stable than when it is fluctuating.
 - a) True, b) False
- 3. Fixed position layouts are used in projects where the product cannot be moved, and therefore equipment, workers, and materials are brought to it.
 - a) True, b) False
- In general, work-in-process inventory is large for a product layout and small for a process layout.
 - a) True, b) False
- 5. Which of the following characteristics is associated with process layout?
 - a) stable demand
- b) less skilled workers
- c) specialized machineryd) low volumee) product for general market

RAT – Solution

- In a Process layout, work stations are arranged according to the general function they perform without regard to any particular product.
- 2. True. A product layout is more suited to situations where product demand is stable than when it is fluctuating.
- 3. True. Fixed position layouts are used in projects where the product cannot be moved, and therefore equipment, workers, and materials are brought to it.
- 4. False. In general, work-in-process inventory is large for a process layout and small for a product layout.
- 5. Low Volume is associated with process layout.

Approaches to Line Balancing

Three Basic Approaches for finding a solution

- COMSOAL Basic random solution generation method
- Ranked Positional Weight Heuristic Good solutions found quickly
- Implicit Enumeration Scheme

Assumptions

Required cycle time, sequencing restrictions and task times are known

COMSOAL Random Sequence Generation

- A simple record-keeping approach that allows a large number of possible sequences to be examined quickly
- Only tasks that satisfy all the constraints are considered at each step.
- Sequence discarded as soon as it exceeds the upper bound.
- Sequence saved if it is better than the previous upper bound and the bound is updated.

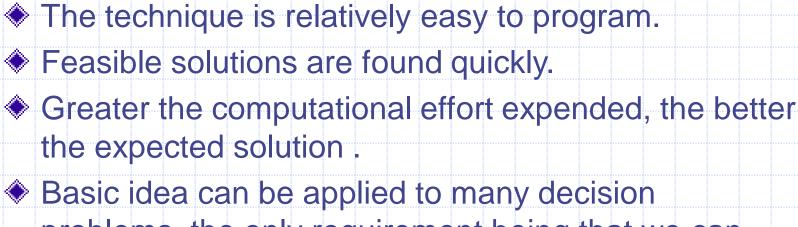
Efficiency depends on the data storage and processing structure

COMSOAL – Cont...

COMSOAL uses several list for speed computation.

- $NIP(i) \rightarrow$ Number of immediate predecessors for each task *i*.
- WIP(i) → Indicates for which other tasks i is an immediate predecessor.
- $TK \rightarrow$ Consists of N tasks.
- During each sequence generation,
 - List of unassigned tasks (A)
 - Tasks from A with all immediate predecessors (B)
 - Tasks from B with task times not exceeding remaining cycle time in the workstation (*F – Fit List*)

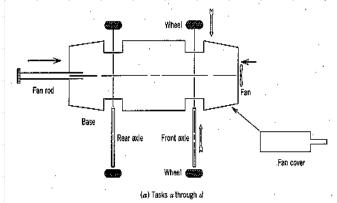
are updated.

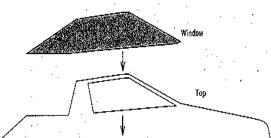

COMSOAL Procedure

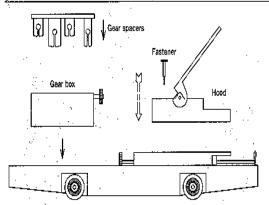
- 1. Set x = 0, $UB = \infty$, C = Cycle Time, c = C.
- 2. Start the new sequence : Set x = x+1, A = TK, NIPW(i) = NIP(i).
- 3. Precedence Feasibility : For all, if NIPW(i) = 0, add i to B.
- 4. Time Feasibility : For all $i \in B$, if $t_i \le c$, add *i* to *F*. If *F* empty, Step 5; otherwise Step 6.
- 5. Open new station : IDLE = IDLE + c. c = C. If IDLE > UB go to Step 2; Otherwise Step 3.

COMSOAL Procedure – Cont...

- 6. Select Task : Set $m = card \{F\}$. Randomly generate $RN \in U(0,1)$. Let $i^* = [m.RN]_{th}$ task from F. Remove i^* from $A, B, F. c = c t_i^*$. For all $i \in WIP(i^*)$, NIPW(i) = NIPW(i) 1. If A empty, go to Step 7; otherwise go to Step 3.
- 7. Schedule completion : IDLE = IDLE + c. If $IDLE \le UB$, UB = IDLE and store schedule. If x = X, stop; otherwise go to Step 2.


COMSOAL – Advantages

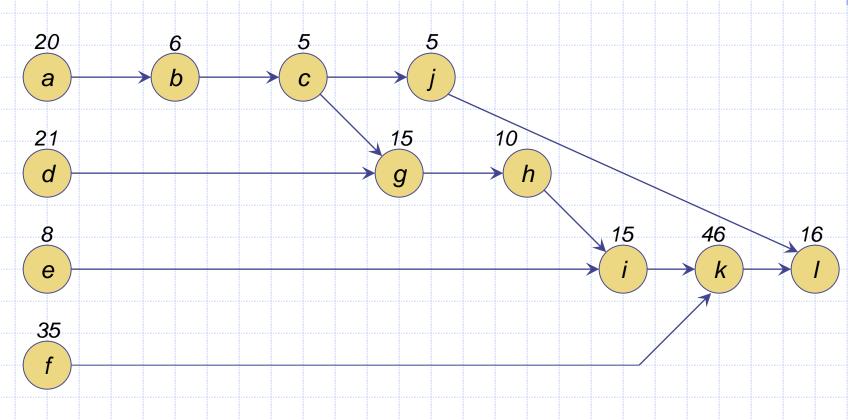



problems, the only requirement being that we can build solutions sequentially and a function evaluation can be performed to rank candidate solutions.

COMSOAL – Example

Task	Activity	Assembly Time	Immediate Predecessor
а	Insert Front Axle / Wheels	20	
b	Insert Fan Rod	6	а
С	Insert Fan Rod Cover	5	b
d	Insert Rear Axle / Wheels	21	-
е	Insert Hood to Wheel Frame	8	-
f	Glue Windows to top	35	-
g	Insert Gear Assembly	15	c, d
h	Insert Gear Spacers	10	g
j	Secure Front Wheel Frame	15	e, h
j	Insert Engine	5	<i>c</i>
k	Attach Top	46	f, i, j
	Add Decals	16	k

(5) Tasks ethrough k


COMSOAL – Example

Data Known :

- Two 4 hour-shifts, 4 days a week will be used for assembly.
- Each shift receives two 10 minute breaks.
- Planned production rate of 1500 units/week.
- No Zoning constraints exist.

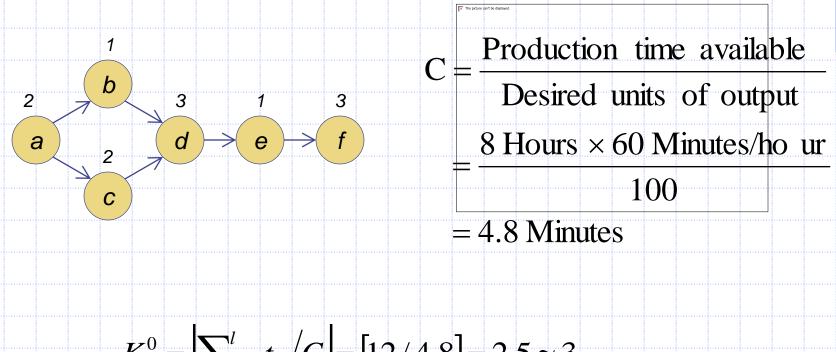
Example Solution

Example Solution – Cont...

$$K^{0} = \left[\sum_{r=a}^{l} t_{r} / C\right] = \left[\frac{202}{70}\right] = 3$$

Thus Better Solutions may exist

Single COMSOAL Sequence Results


Step	List A	List B	List F	U (0,1)	Selected Tasks	Station (Idle Time)
1	a through I	a, d, e, f	a, d, e, f	0.34	d	1(49)
2	a through I, -d	a, e, f	a, e, f	0.83	f	1(14)
3	a, b, c, e, g, h, i, j, k, l	а, е	е	-	е	1(6)
4	a, b, c, g, h, i, j, k, l	а	-	Open Station		
4	a, b, c, g, h, i, j, k, l	а	а	-	а	2(50)
5	b, c, g, h, i, j, k, l	b	b	-	b	2(44)
6	c, g, h, i, j, k, l	С	С	-	С	2(39)
7	g, h, i, j, k, l	g, j	g, j	0.21	g	2(24)
8	h, i, j, k, l	j, h	h, j	0.42	h	2(14)
9	i, j, k, l	i, j	j	-	j	2(9)
10	i, k, l	i	-	Open Station		
10	i, k, l	i	i	-	i	3(55)
11	k, l	k	k	-	k	3(9)
12	1	1	-	Open Station		
12	1	1	<i>I</i>	-	1	4(54)

Spot Exercise

Solve the following line balancing problem using COMSOAL procedure. Assume demand is 100/day.

Task	Time	Immediate Predecessor
а	2	
b		a
С	2	а
d	3	b, c
е	1	d
f	3	е

Exercise Solution

$$K^{0} = \left[\sum_{r=a}^{l} t_{r} / C \right] = \left[\frac{12}{4.8} \right] = 2.5 \approx 3$$

Exercise Solution – Cont...

Step	List A	List B	List F	U(0,1)	Selected Task	Station (Idle Time)
1	a to f	a	а	·····	а	1(2.8)
2	b to f	b, c	b, c	0.68	С	1(0.8)
3	b to f, -c	b	b	-	b	2(3.8)
4	d to f	d	d	-	d	2(0.8)
5	e, f	е	е	· · · · · · · · · · · · · · · · · · ·	е	3(3.8)
6	f	f	f	-	f	3(0.8)

Ranked Positional Weight Heuristic

- A task is prioritized based on the cumulative assembly time associated with itself and its successors.
- Tasks are assigned in this order to the lowest numbered feasible workstation.
- Cumulative remaining assembly time constrains the number of workstations required.
- Illustrates the greedy, single pass heuristics.

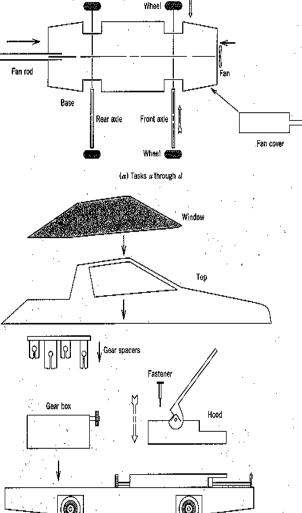
Procedure requires computation of positional weight *PW(i)* of each task.

RPW Procedure

• Let $S(i) \rightarrow$ Set of successors of tasks *i*.

◆ Example, $j \in S(i)$ means j cannot begin until i is complete.

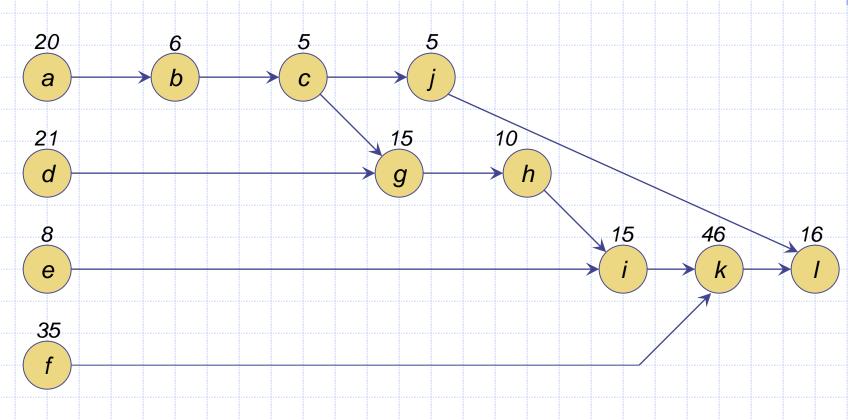
- Compute $PW_i = t_i + \sum_{r \in S(i)} t_r$
- Tasks ordered such that i < r implies $i \text{ not } \in S(r)$.
- Task r is then a member of S(i) only if there exists an immediate successor relationship from i to r.
- Immediate successors IS(i) are known from the inverse of the IP(i) relationships.


RPW Procedure – Cont...

- Task Ordering : For all tasks *i* = 1,...,*N* compute *PW(i)*.
 Order (rank) tasks by nonincreasing *PW(i)*
- 2. Task Assignment : For ranked tasks i = ,...,N assign task i to first feasible workstation.
- Precedence Constraints : assignment to any workstation at least as large as that to which its predecessors are assigned

Zoning & Time Restrictions : Checked on placement.

RPW Procedure - Example


Task	Activity	Assembly Time	Immediate Predecessor		->
а	Insert Front Axle / Wheels	20	-	Fan	rod
b	Insert Fan Rod	6	a		
c	Insert Fan Rod Cover	5	<i>b</i>		
d	Insert Rear Axle / Wheels	21			
е	Insert Hood to Wheel Frame	8	-		
f	Glue Windows to top	35	-		,
g	Insert Gear Assembly	15	c, d	<u> </u>	
h	Insert Gear Spacers	10	g		Ø
i	Secure Front Wheel Frame	15	e, h		
j	Insert Engine	5	c		Ļ
k	Attach Top	46	f, i, j	······	~
	Add Decals	16	k		<u> </u>

(5) Tasks ethrough k

Example Solution

RPW Procedure - Solution

Positional Weight calculated based	Task	PW	Ranked PW
on the precedence structure	а	138	1
(previous slide).	b	118	3
	С	112	4
PW_{I} = its task time = 16	d	123	2
$PW_k = t_k + PW_l = 46 + 16 = 62$	е	85	8
$PW_{i} = t_{i} + PW_{k} = 5 + 62 = 67$	f	97	6
$VV_j - c_j + VV_k - 0 + 02 - 01$	g	102	.5
	h	87	7
	i	77	9
	j	67	10
	k	62	11
	I	16	12

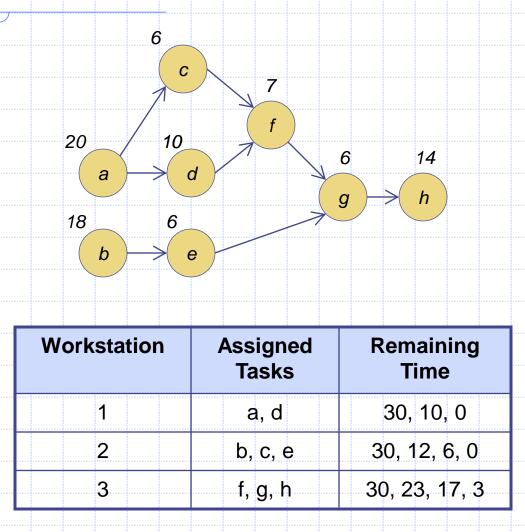
RPW Solution Cont...

Assignment order is given by the rankings.
 Task a assigned to station 1.

• $c - t_a = 70 - 20 = 50$ seconds left in Station 1.

Next Assign task d

■ 50 – 21 = 29 seconds left in Station 1.


Station	Time Remaining	Tasks
1	70, 50, 29, 23, 18, 3	a, d, b, c, g
2	70, 35, 25, 17, 2	f, h, e, i
3	70, 65, 19, 3	j, k, l

Team Exercise

Assembly of a product has been divided into elemental tasks suitable for assignment to unskilled workers. Task times and constraints are given below. Solve by RPW Procedure

Task	ask Time Immedia Predecess	
а	20	<u> </u>
b	18	-
С	6	а
d	10	а
е	6	b
f	7	c, d
g		e, f
h	14	g

Exercise Solution

Task	PW _i	Rank
а	63	1
b	44	2
С	33	4
d	37	3
е	26	6
f	27	5
g	20	7
h	14	8

Assignment

Write a flowchart for COMSOAL using the decision rule that feasible tasks are selected with probability proportional to their positional weight.