Reduction of quadratic form to canonical form by orthogonal transformation

Reduce the quadratic form $2x_1^2 + 2x_2^2 + x_2^2 + 4x_1x_2 = 0$ to canonical form by orthogonal

reduction .Find rank, index, signature and nature

<u>Step 1:</u>

The matrix form is

 $\begin{array}{cccc} 2 & 2 & 0 \\ A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

<u>Step 2:</u>

Characteristic equation ,Eigen values, Eigen vectors

C₁ =Sum of leading diagonal elements

=2+2+1 =5

C₂= Sum of minors of leading diagonal elements

=4

 $C_3 = |A|$

The characteristic equation is

$$\lambda^3 - 5\lambda^2 + 4\lambda = 0$$

The eigen values are 0,1,4

The eigen vectors are $(A - \lambda I)X = 0$

Reduction of quadratic form to canonical form by orthogonal transformation

2	2	0		1	0	0	x_1	
[(2	2	0)-	-λ(0	1	0)]	(x_2)	= 0
0	0	1		0	0	1	x_3	
-	2 —	λ	2		0	x	1	
(2	2	$-\lambda$		0) (X	2) =	0
	0		0	1	$-\lambda$	<i>x</i>	3	

2	2	$0 x_1$
(2	2	0) $(x_2) = 0$
0	0	$1 x_3$

2 2 0

0 0 1

 $(2 \ 2 \ 0)(x_2) = 0$

 x_1

 x_3

CASE (i)

When $\lambda = 0$

The cofactor of first row elements are $\begin{pmatrix} 2 & 1 \\ -2 \end{pmatrix}$ ie $\begin{pmatrix} -1 \\ 0 & 0 \end{pmatrix}$ The Eigen vector when $\lambda = 0$ is $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$

CASE (ii)

When $\lambda = 1$

The cofactor of third row elements are $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ie $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -3 -1

 $\begin{array}{rrrr} 1 & 2 & 0 & x_1 \\ (2 & 1 & 0) & (x_2) = 0 \end{array}$

 χ_3

0 0 0

Reduction of quadratic form to canonical form by orthogonal transformation

The Eigen vector when $\lambda = 1$ is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -1

CASE (iii)

When $\lambda = 4$

 $1 \quad 2 \quad 0 \quad x_1$ $(2 \quad 1 \quad 0) \quad (x_2) = 0$ $0 \quad 0 \quad 0 \quad x_3$ The cofactor of first row elements are $\begin{pmatrix} 6 & 1 \\ 6 \end{pmatrix} ie \quad (1) \\ 0 \quad 0$ The Eigen vector when $\lambda = 4$ is (-2) 1

STEP 3:

To check pair wise orthogonality

$$X_{1}^{T}X_{2} = \begin{pmatrix} 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = 0$$
$$X_{2}^{T}X_{3} = \begin{pmatrix} 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 0$$
$$X_{3}^{T}X_{1} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 0$$
$$0$$

<u>STEP 4:</u>

To find normalized vector

Reduction of quadratic form to canonical form by orthogonal transformation

Eigen vector	$l(x) = \sqrt{x_1^2 + x_2^2 + x_3^2}$	$x_1/l(x_1)$ Normalized vector =($x_2/l(x_2)$) $x_3/l(x_3)$
$ \begin{array}{c} 1\\ (-1)\\ 0 \end{array} $	$\sqrt{1+1+0} = \sqrt{2}$	$ \begin{array}{c} 1^{1/2} \\ 1^{-2} \\ -1_{\sqrt{2}} \\ \mathbf{h}^{-0} \end{array}\right) $
$ \begin{array}{c} 0\\ (0)\\ -1 \end{array} $	$\sqrt{0+0+1} = \sqrt{1}$	0 (0) -1
$ \begin{array}{c} 1\\ (1)\\ 0 \end{array} $	$\sqrt{1+1+0} = \sqrt{2}$	$ \begin{array}{c} 1_{/\sqrt{2}} \\ l_{1} \\ \sqrt{2} \\ h 0) \end{array} $

STEP 5:

Normalized modal matrix

$$N = \begin{vmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} \end{vmatrix}$$

$$\mathbf{N}^{\mathrm{T}} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & -1\\ 1/\sqrt{2} & 1/\sqrt{2} & 1\\ 1/\sqrt{2} & 1/\sqrt{2} & 1 \end{bmatrix}$$

STEP 6:

$$NN^{T} = N^{T}N = I$$

Reduction of quadratic form to canonical form by orthogonal transformation

$$N^{T}N = \mathbf{I} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 & \mathbf{I} \\ 0 & 0 & -1 & \mathbf{I} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ |-1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$$
$$h^{1}/\sqrt{2} \begin{bmatrix} 1/\sqrt{2} & 1 & 0 & 1/\sqrt{2} \\ h & 0 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \mathbf{I}$$

STEP 7:

To find diagonalyze matrix

$$N^{T}AN = D$$

$$N^{T}A = \frac{1}{\sqrt{2}} \begin{pmatrix} -1/\sqrt{2} & 0 & 2 & 2 & 0 \\ 0 & 0 & -1 & (2 & 2 & 0) \\ 1/\sqrt{2} & 1/\sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ 4/\sqrt{2} & 4/\sqrt{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 4/\sqrt{2} & 4/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0/\sqrt{2} & 4/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

$$= D$$

Reduction of quadratic form to canonical form by orthogonal transformation

<u>Step 8:</u>

 $Y^{T}DY = 0$

 $0y_1^2 + y_2^2 + 4y_3^2 = 0$

The index p=2

Rank r=2

Signature s=2p-r =2

The nature is semi positive