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dvanced driver-assistance systems (ADASs) 
have become a salient feature for safety in modern 
vehicles. They are also a key underlying technolo-
gy in emerging autonomous 
vehicles. State-of-the-art 

ADASs are primarily vision based, 
but light detection and ranging (lidar), 
radio detection and ranging (radar), 
and other advanced-sensing technolo-
gies are also becoming popular. In this 
article, we present a survey of differ-
ent hardware and software ADAS 
technologies and their capabilities and 
limitations. We discuss approaches 
used for vision-based recognition and 
sensor fusion in ADAS solutions. We 
also highlight challenges for the next 
generation of ADASs.

OVERVIEW OF AUTOMOTIVE 
SYSTEM SAFETY
Safety in automotive systems has been 
a major concern since the early days 
of on-road vehicles. Several original 
equipment manufacturers (OEMs) 
have attempted to address this issue 
by developing various safety systems 
to protect occupants within a vehicle 
as well as prevent injuries to people 
outside the vehicle. These systems are 
mainly classified into two types: 1) 
passive (or reactive) and 2) active (or 
proactive). Passive safety systems pro-
tect vehicle occupants from injuries 
after a crash, e.g., seat belts, air bags, 
and padded dashboards. Due to a con-
sistent consumer demand for safer 

vehicles, passive safety systems that have been under contin-
uous development for many decades have been augmented by 
active safety systems, which seek to prevent a crash from 
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happening altogether. Active systems are one of the main 
areas of interest and have seen major growth in today’s vehi-
cles. Examples of such systems include lane keeping, auto-
matic braking, and adaptive cruise control. These systems are 
commonly known as ADASs and are becoming increasingly 
popular as a way for automotive manufacturers to differenti-
ate their offerings while promoting consumer safety.

Recent studies from the World Health Organization indicate 
that 1.25 million deaths occur every year due to road traffic 
accidents [1]. Moreover, such accidents in recent years have an 
annual global cost of US$518 billion, which takes away 
approximately 1–2% of gross domestic product from all of the 
countries in the world [2]. These high fatality rates, monetary 
losses, and increasing customer demand for intelligent safety 
systems are some of the key reasons for OEMs to develop 
ADASs. Moreover, with the increasing number of electronic 
control units and integration of various types of sensors, there 
are now sufficient computing capabilities in vehicles to support 
ADAS deployments. The different types of sensors, such as 

cameras, lidar, radar, and ultrasonic sensors, enable a variety of 
different ADAS solutions. Among them, the vision-based 
ADAS, which primarily uses cameras as vision sensors, is pop-
ular in most modern-day vehicles. Figure 1 shows some of the 
state-of-the art ADAS features and the sensors used to imple-
ment them.

Modern-day ADASs are also key technologies to realize 
autonomous vehicles [3]. But several challenges with the 
design, implementation, and operation of ADASs remain to be 
overcome. Some of these challenges include minimizing energy 
consumption, reducing response latency, adapting to changing 
weather conditions, and security. In this article, we provide a 
synopsis of the landscape of ADAS research and development 
to address these challenges.

ADAS TAXONOMY
We propose a taxonomy of ADASs based on the type of sen-
sors they use (Figure 2), as discussed next.

VISION SENSORS
Cameras are the most commonly used vision sensors in vehi-
cles. Vision-based ADAS uses one or more cameras to cap-
ture images and an embedded system to detect, analyze, and 
track different objects in them. In high-end ADAS, cameras 
are used to monitor both the inside and outside of the vehicle. 
Camera integration in modern vehicles is becoming more 
common because of its low cost and easy installation. At the 
2018 Consumer Electronics Show, Mobileye stated that it is 
introducing smart cameras in millions of cars hitting the 
streets in 2018. In addition, laws such as [4] (that mandate all 
vehicles manufactured from 1 May 2018 onward use vision-
based ADAS) will further aid in camera integration. Cameras 
capture information such as color, contrast, and texture, 
which gives them a unique advantage over other sensors. Two 
types of cameras are often used in vision-based ADAS: 1) 
monocular and 2) stereo.

MONOCULAR CAMERAS
These camera systems have only one lens. As these systems 
have only one image output at any point of time, they have 
low image-processing requirements compared to those of 
other camera types. These cameras can be used for multiple 
applications, such as the detection of obstacles, pedestrians, 
lanes, and traffic signs [5]. They can also be used for moni-
toring the driver inside a vehicle, e.g., for face- and eye-
detection and head-pose analysis [23]. But monocular camera 
images lack depth information and are, therefore, not reliable 
sensors for distance estimation. Some techniques [5] allow 
approximating distance by identifying key features in the 
captured image frame and tracking their position when the 
camera is in motion.

STEREO CAMERAS 
These systems consist of two or more lenses, each with image 
sensors, separated by a certain distance (known as stereo 
base). Stereo cameras are useful in extracting three-dimensional ©
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(3-D) information from two or more two-dimensional images 
by matching stereo pairs (images from left and right sensors) 
and using a disparity map to estimate the relative depth of a 
scene. These cameras can be used for a variety of applications, 
such as traffic sign recognition, lane, pedestrian, and obstacle 
detection as well as distance estimation, with much greater 
accuracy compared to monocular cameras.

Stereo systems can be relied upon for accurate distance 
(depth) estimation over short distances, up to 30 m. In most 
production vehicles with stereo cameras, the cameras are locat-
ed inside the vehicle, behind the rear-view mirror, angled slight-
ly downward, and facing the road. 

IR CAMERAS
There are two main types of IR cameras. Active IR cameras 
use a near-IR light source (with wavelengths from 750 to 1,400 nm) 
built in the vehicle to illuminate the scene (which cannot be 
seen by the human eye) and a standard digital camera sensor to 

capture the reflected light. Passive IR cameras use an IR sen-
sor, where every pixel on the IR sensor can be considered as a 
temperature sensor that can capture the thermal radiation emit-
ted by any material. Unlike active IR cameras, passive IR cam-
eras do not require any special illumination of the scene. Still, 
popular night-vision solutions mainly use active IR cameras to 
assist the driver by displaying video data on a screen during 
low light conditions.

LIDAR
Lidar works by firing a laser beam at an object and then mea-
suring the time taken for the light to bounce back to the sen-
sor, to calculate the distance of an object. These systems can 
achieve high-resolution 3-D images and operate at longer 
ranges than camera systems. Some of the lidar scanners sup-
port surround-view sensors (that fire laser beams continuously 
in all directions), which can generate a 360° 3-D image of the 
surroundings with extremely accurate depth information (as 
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FIGURE 1. The state-of-the-art ADAS sensors used.
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FIGURE 2. The taxonomy of an ADAS. PMD: photonic mixer device; IMUs: inertial measurement units; GPSs: global positioning systems.
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shown in Figure 3). Lidar is becoming very popular in autono-
mous vehicles. Several prototype vehicles [8], [9] have dem-
onstrated the advantages of using lidar in autonomous driving. 
Lidar is useful for systems implementing automatic braking, 
object detection, collision avoidance, and more. Depending on 
the type of sensor, lidars for cars can have a range of up to 
60 m. Despite the aforementioned advantages, lidars are 
heavy, bulky in size, and expensive. Moreover, atmospheric 
conditions such as rain or fog can impact the coverage and 
accuracy of these systems. Emerging solid-state lidars [10] 
have opened the possibility of powerful lidars that are signifi-
cantly smaller and relatively inexpensive.

RADAR
Radar systems emit microwaves and estimate the speed and 
distance of an object by measuring the change in the frequen-
cy of the reflected wave as per the Doppler effect. Due to the 
longer wavelength of microwaves, they can travel much far-
ther than optical light (e.g., with lidar) and can detect objects 
at a longer distance. Unlike lidar, radar is not affected by 
foggy or rainy weather conditions and is relatively inexpen-
sive. Depending on their operating distance range, radar sys-
tems can be classified as short range (0.2–30 m), medium 
range (30–80 m), or long range (80–200 m) [11]. Cross-traffic 
alerts and blind-spot detection are some of the applications of 
short-/medium-range radars. These systems are often located 
at the corners of a vehicle. Adaptive cruise control is a long-
range radar application, with the system located behind the 
front grill or under the bumper. Researchers have been devel-
oping algorithms to improve the performance of radar and 
reliability all while attempting to reduce the cost and power of 
the system [6].

ULTRASONIC SENSORS
Ultrasonic sensors use sound waves to measure the distance 
to an object. These sensors are mainly used for detecting 
objects very close to the vehicle. Some example applications 
include automatic parking and parallel parking assist. These 
sensors are mainly located under the front and rear bumper of 
the vehicle.

OTHERS
A few other sensors are used to complement and improve the 
functionalities of those discussed earlier. For instance, pho-
tonic mixer device (PMD) cameras consist of an array of 
smart sensors that enable fast optical sensing and demodula-
tion of incoherent light signals simultaneously [12]. PMDs 
can support parallel target pixel-wise distance measurement 
without scanning, thus resulting in faster imaging, high later-
al resolution, and depth information. IMUs and GPSs are 
examples of systems that help improve the distance measure-
ments with lidar and radar.

VISION-BASED ADASs
Vision-based ADASs rely on images from cameras and use 
computer vision principles to extract useful information. 

COMPUTER VISION DATA FLOW FOR ADASs
Figure 4 shows the steps involved in a vision-based system, 
each of which is discussed.

IMAGE ACQUISITION
This refers to the process of capturing a frame from a video. 
The frame is often represented as a matrix of pixel data where 
each frame contains three channels of information, e.g., red, 
green, and blue (RGB) sets of pixels. Typical frame rates in 
ADASs range from five frames per second (fps) to 60 fps 
depending on the application. Applications that involve detec-
tion of vehicle proximity need a higher frame rate due to the 
rapid change in distance for cars on the road. In contrast, traf-
fic sign detection does not demand a higher frame rate 
because only one frame of the sign needs to be captured for 
the sign to be detected.

PREPROCESSING
There are several common preprocessing steps needed to pre-
pare an image for various computer vision algorithms, e.g., 
denoising, color enhancement, color space conversion, and 
image stabilization. A typical example of color space conver-
sion is to convert the RGB color space to hue, saturation, and 
value to separate color from the intensity. Moreover, the hue 
channel is often used to separate out adverse effects (e.g., 
shadows, uneven lighting, and over- and underexposure) in the 
image to make tracking and detection easier.

SEGMENTATION
This is the process of separating features from a frame. In 
analyzing an image, it is helpful to partition it into recogniz-
able objects, e.g., identifying the road and sky in a frame as 

FIGURE 3. The Google self-driving-car-generated 3-D image of its 
surroundings using lidar [9].
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two different features. Various thresholding techniques are 
used to filter one class of pixels (e.g., the road) from another 
(e.g., the sky). One of the methods, e.g., exploits color infor-
mation to detect a stop sign, where an algorithm may look for 
red in the image (typical for stop signs in the United States). 
Any pixels in that red range will be turned white, and any-
thing that is not will be turned black, as shown in Figure 5(a). 
This results in a binary image that is often used as a mask for 
finding the area of interest on the original image.

OBJECT DETECTION AND TRACKING
This is the process of classifying an object in an image (e.g., 
determining if an object ahead is a vehicle, sign, or pedestrian) 
and predicting its movement. It is often accomplished with var-
ious machine-learning (ML) algorithms. ML algorithms are 
provided large training data sets (thousands of images) to learn 
and differentiate between vehicles and common objects found 
around them. An example of an object detection method is 
called the cascade classifier, which was first presented in [13] 
for face detection, on low-performance hardware systems.

Another common technique to train and classify images is 
using a convolutional neural network (CNN), which  typically 
consists of an input layer, multiple hidden layers, and an output 
layer. The hidden layers consist of convolution and pooling 
layers that are used for feature extraction and a fully connected 
layer for classification. Examples of CNN frameworks used for 

vision applications include Caffe, Darknet, and MATLAB. An 
application of a CNN for object tracking is discussed in [14]. 
Kalman-filter-based object tracking is proposed in [15], where 
the filter tracks the object’s velocity.

DEPTH ESTIMATION
This step involves estimating the distance of an object in the 
image frame relative to the camera. There are two common 
methods for depth estimation: 1) the use of a stereo camera to 
create a stereo pair and develop them to make a depth map 
and 3-D point cloud that allow a real-world reconstruction of 
the scene [16]; and 2) the use of a monocular camera and sev-
eral state-of-the art techniques that use a subset of optical 
flow, calibration, and least squares techniques [17].

System control
This is the last step in the vision data flow, which involves 
interpretation of the outputs from previous layers, as shown 
in the vision data flow diagram in Figure 4. This step requires 
a weighing of each layer in the vision pipeline to come up 
with a confidence value that can be used to make decisions. A 
major challenge at this step is a false detection with high con-
fidence that would take priority over other information 
obtained from the previous layers. Thus, training with data 
that is correct and contains many orientations of the object to 
be classified is crucial to achieve high accuracy.

OUTDOOR MONITORING
In this section, we will discuss the classification of objects that 
are outside a vehicle, e.g., pedestrians, vehicles, and roads.

PEDESTRIAN DETECTION
Detecting pedestrians is done using various classifiers, e.g., 
[18]. Often more than one classifier is used for detecting peo-

ple because of the varying orientation 
and configuration in which pedestrians 
may appear. Deep-learning networks 
such as CNNs have been helpful to not 
only identify pedestrians but also clas-
sify their actions. 

VEHICLE DETECTION
Vehicle detection is a major focus of 
object detection in ADASs. The fact 
that many vehicles share common fea-
tures, such as having tires, brake lights, 
and license plates, allows the detection 
of these objects to indicate the pres-
ence of a car. These features are all 
used to distinguish the vehicle from 
other objects, such as signs, roads, and 
other miscellaneous objects. In Figure 6, 
an example of vehicle detection is shown, 
using a CNN framework (Darknet) 
and a real-time detection system, You 
Only Look Once [19]. The orientation 

Confidence = 0.921278 String = STOP

Confidence = 0.907121 String = STOP

Confidence = 0.889147 String = STOP

(a) (b)

FIGURE 5. The stop sign detection: (a) a binary stop sign and (b) stop sign classification 
using optical character recognition.

IMUs and GPSs are examples of  
systems that help improve the  
distance measurements with  
lidar and radar.
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of vehicles can cause some issues with their identification. A 
vehicle being viewed from the front contains a different set of 
features than a vehicle from the side or back. Often vehicle 
classifiers consider various classes of vehicles, such as cars, 
trucks, and semis that are trained with many orientations. 

SIGN DETECTION
Many ADASs are beginning to support traffic sign detection. 
The most common use case is determining the speed limit on 
the road by reading a speed sign (an ADAS would alert the 
driver if the vehicle speed is over the limit). For instance, 
color thresholds can be used to find the location of a sign and 
optical character recognition to determine what that sign dis-
plays [as shown in Figure 5(b)]. Other methods include using 
CNNs and hybrid techniques, such as [20].

LANE DETECTION
Another ADAS feature used in a few production vehicles is 
the ability to keep the vehicle within the lane lines on the 
road (illustrated in Figure 6). However, lane lines are one of 
the hardest road features to detect because of their inconsis-
tencies, such as being different colors, faded, and sometimes 
not even present. Current methods to detect lane lines often 
use a Canny transform to find the edges in the image. Once 
the edges are found, a Hough transform is used to compare 
the lines to a single slope to determine if they are indeed lane 
lines [21]. The use of CNNs is also becoming popular for lane 
line detection.

COLLISION AVOIDANCE
ADASs are beginning to incorporate automatic braking and 
collision avoidance. This is done by combining many features 
discussed earlier, such as object tracking, vehicle detection, 
and distance estimation [14]. With this combination of data, a 
vehicle can predict a collision and stop it from happening by 
braking or even steering out of the way.

INDOOR MONITORING
In a study conducted by the National Highway Traffic 
Security Administration [22], it was observed that driver 
fatigue, drowsiness, or distraction are the causes of 80% 
of vehicle accidents. As ADAS becomes prevalent in pro-
duction vehicles, there has been an increase in focus on 
monitoring the driver using a camera pointed at him or 
her. If the driver accesses a phone or does not look at the 
road for a specific time duration, an alert or attempt to get 
off the road will be made [23]. Drowsiness-fatigue-detec-
tion systems have also included the ability to detect if the 
driver has fallen asleep and can attempt to alert the driver 
though a sequence of seatbelt vibrations and speaker 
alerts [24].

NEXT-GENERATION ADASs
Next-generation ADAS solutions are beginning to use sensor 
fusion and other advanced communication systems, such as 
vehicle-to-everything (V2X). 

SENSOR FUSION
Sensor fusion refers to combining information from multiple 
homogenous or heterogeneous sensors to find a single best 
estimation of the state of the environment. Fusion helps sen-
sors complement each other’s limitations and offers greater 
leverage to the system compared to a system with individual 
sensors. Sensor fusion offers high precision, reliability, 
robustness to uncertainty, extended spatial and temporal cov-
erage, and improved resolution, which are crucial in safety-
critical systems, such as vehicles. Although this comes at a 
higher computation cost, the computation power available in 
modern-day cars and the reducing cost of the sensors are 
facilitating the widespread integration of these systems.

The classification of different levels of sensor fusion along 
with the most commonly used techniques for fusing data are 
discussed in [25]. The growing interest in deep learning and 
other ML methods in recent years has driven researchers 
toward exploring more efficient and intelligent techniques 
that enhance ADASs with sensor fusion capabilities. 

V2X COMMUNICATION
V2X communication represents a class of communication 
systems that provides the vehicle with an ability to exchange 
information with other systems in the environment. Examples 
include vehicle-to-vehicle (V2V) for collision avoidance, 
vehicle-to-infrastructure (V2I) for traffic signal timing, vehicle-
to-network for real-time traffic updates, and vehicle-to-
pedestrian for pedestrian signaling. State-of-the-art V2X 
communication is based on either dedicated short-range com-
munications (DSRC) or cellular networks [26]. The IEEE 
1609 family of standards for Wireless Access in Vehicular 
Environment (WAVE), which is developed based on the IEEE 
802.11p standard, defines an architecture and a set of services 
and interfaces to enable DSRC-based secure V2V and V2I 
communication [27]. 

FIGURE 6. The object (lane, vehicle, and sign) detection. 
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AUTONOMOUS VEHICLES
Next-generation ADASs using sensor fusion and V2X commu-
nication are paving the way for autonomous driving. The Soci-
ety of Automotive Engineers (SAE) J3016 standard [28] defines 
six different levels of driving automation for on-road vehicles 
(see Table 1). A vehicle is categorized as level zero if there are 
no ADASs assisting the driver in handling steering and acceler-
ation/deceleration and everything is handled manually by the 
driver. Level one vehicles consist of ADASs assisting the driver 
in handling either steering or acceleration/deceleration under 
certain cases with human driver input. ADASs in level two 
vehicles handle both steering and acceleration/deceleration 
under certain environments with human driver input. In general, 
in lower-level vehicles (levels zero to two), the driver monitors 
the driving environment. In contrast, ADAS monitors the driv-
ing environment in higher-level (levels three to five) vehicles. 
Modern vehicles with the top-of-the-line ADASs, such as the 
2016 Tesla model S, are level three, where multiple safety sys-
tems are handled by the system, but the driver intervenes when 
needed. Level four vehicles handle multiple safety systems and 
operate in a wider range of environments. Level five automation 
is the end goal of autonomous driving, where all of the systems 
in the car are operated by the ADAS, under all driving condi-
tions (such as snow-covered roads and unmarked dirt roads) 
and would not require any human intervention. This, however, 
still requires significant advances in multiple areas, such as sen-
sor technology, computing systems, and automotive networks.

CHALLENGES WITH ADASs
Despite significant advances in the field of ADASs, several 
important challenges remain to be overcome.

CHANGING ENVIRONMENTAL CONDITIONS
One of the major problems with today’s ADASs is that the per-
formance of the system is significantly impacted by changing 
environmental and weather conditions. For example, vision-
based ADASs have issues with sensing during rainy and 
extreme lighting conditions (too dark and/or too bright) [30]. 
One of the possible solutions to this problem includes sensor 
fusion, by relying on other sensor data depending on the 
weather conditions, e.g., relying on the camera and radar dur-
ing low light conditions while using the camera and lidar dur-
ing other times for accurate distance estimation. The inclusion 
of V2I and developing cost-effective smart roads could help 
mitigate this issue.

RESOURCE-CONSTRAINED SYSTEM
Embedded systems used in ADASs have a requirement for 
low power consumption. This is because ADASs involve run-
ning several complex algorithms that result in high power 
consumption and thermal dissipation. Due to the limited av
ailability of energy in vehicles, it is essential to minimize the 
power consumption of the embedded system used in ADASs. 
Using more energy-efficient hardware than conventional gen-
eral-purpose central processing units is important, which is 
why emerging ADAS hardware must rely on graphics pro-
cessing units, digital signal processors, image signal proces-
sors, etc., that are customized to reduce power consumption 
for ADAS applications. Moreover, as the embedded systems 
for ADAS operate in real time, they have strict timing con-
straints, which establishes a latency minimization require-
ment. Hence, optimized hardware and software that results in 
minimal power consumption and greater performance (lower 
latency) predictability are highly desired in an ADAS.

SECURITY
Modern vehicles are becoming increasingly connected with a 
lot of different systems, such as Wi-Fi, near-field communica-
tion, and V2X. This enables the vehicle to sense and receive a 
variety of information but also makes it more vulnerable to 
attacks. Many vehicle hacks have been demonstrated, e.g., 
researchers in [7] used onboard diagnostics (OBD-II) to hack a 
GM vehicle. In [29], the telematics system in a Jeep Cherokee 
was hacked to accelerate, brake, and kill the engine. This prob-
lem is aggravated in ADASs and autonomous driving. Prevent-
ing hackers from gaining access to connected vehicles is 
becoming increasingly important. This involves securing both 
in-vehicle networks and external communication.

GEOSPATIAL CONSTRAINTS
Many of the modern ADAS solutions being developed are 
tested within a geographic location or a group of locations 
where they are sold. This limits the ADAS to one or a certain 
group of geographical locations. This is because not all coun-
tries (or some states in a country) adhere to the same sign and 
road conventions uniformly, which makes ADAS algorithms 
that are often trained under one location hard to work 
efficiently in other locations. There is a need to improve 

Modern vehicles are becoming 
increasingly connected with  
a lot of different systems,  
such as Wi-Fi, near-field  
communication, and V2X.

Table 1. SAE J3016 levels of driving  
automation [28].

SAE Level Definition
Monitoring of  
Driving Environment

Zero No automation

Human driverOne Driver assistance

Two Partial automation

Three Conditional automation

SystemFour High automation

Five Full automation
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algorithms, e.g., by exploiting V2X technology deployments 
to overcome variations in road sign conventions.

CONCLUSION
In this article, we presented a detailed survey of different types of 
ADAS variants and an overview of the sensors used in these vari-
ants. We described a classification of ADASs based on the different 
types of sensors used and discussed outdoor and indoor monitoring 
with vision-based ADASs. The importance of sensor fusion tech-
niques and advanced communication systems, such as V2X, and 
their importance for emerging autonomous vehicles was also dis-
cussed. Finally, we presented some important unresolved challeng-
es with ADASs that must be addressed going forward.
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