

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

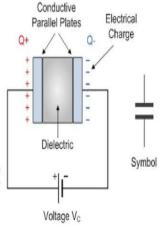
Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

UNIT IV: ENENGY STORAGE

TOPIC: SUPER CAPACITOR BASED ENERGY STORAGE AND ITS ANALYSIS

PRESENTED BY

MANIKANDAN.S 19ME035 MECH A



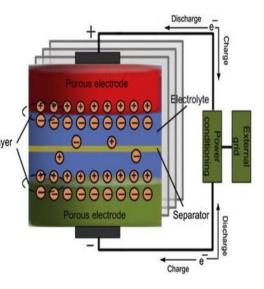
CAPACITOR

CAPACITOR

- A Capacitor (originally known as condenser) is a passive two terminal electrical component to store energy in an Electric field.
- When a Capacitor is attached across a battery, an electric field develops across a dielectric, causing positive charge +Q to develop on one plate and negative charge –Q to develop on the other plate.

Capacitor have many important application

Information stored in large computer memories Is not lost during a momentary electric power failure

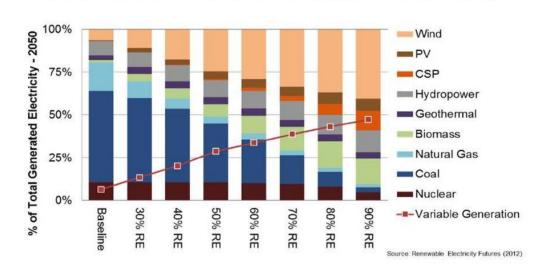

The electric energy stored in such capacitors maintains the information during the temporary loss of power

SUPERCAPACITOR

- A Supercapacitor is an electrochemical capacitor that has a very high energy density as compared to common capacitors, about 100 times greater.
- Supercapacitor is also known as an Double-layer / Electric Double layer Capacitor (EDLC) or an ultracapacitor.
- The Capacitance range is from 100F to 5kF.

HISTORY OF SUPERCAPACITORS

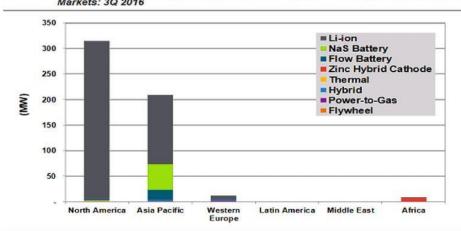
- In 1950s General Electric Engineers started experimenting components using porous carbon electrodes for fuel cells and rechargeable batteries.
- In 1957 H Becker developed a "low voltage electrolytic capacitor with porous carbon electrodes".
- That Capacitor came to known as Supercapacitor as it stored very high amount of Energy.


FEATURES OF SUPERCAPACITOR

- Stores high amount of Energy as compared to capacitors.
- Have high Capacitance.
- High rates of Charge and Discharge (i.e. High Power Density).
- Little Degradation over Thousands of Cycle.
- Low Toxicity.
- High Cycle Efficiency (95%).

RENEWABLE FUTURE STUDY SCENARIOS - 2050

NEED OF STORAGE SYSTEM WITH RENEWABLES

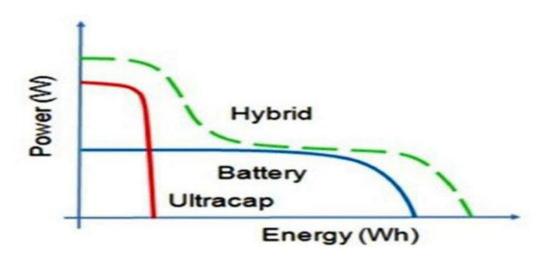

- Offsets negative effects on Grid from renewable Generation variability
- Addresses power Quality Effects from Renewable Generation
- Reduced need for Ramping
- Grid Security
- Reduces Carbon Footprint
- Economic Growth
- Job Growth

ENERGY STORAGE POWER CAPACITY BY TECHNOLOGY

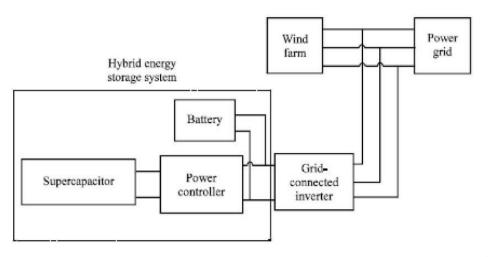
Chart 1.1 New Announced Energy Storage Power Capacity by Technology and Region, World Markets: 3Q 2016

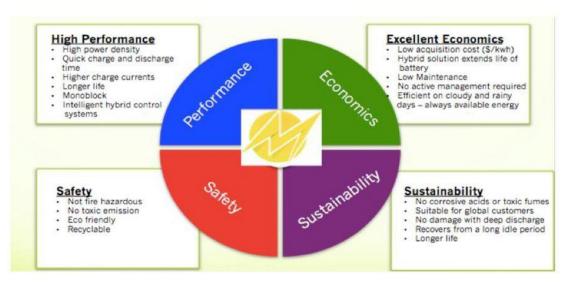
(Source: Navigant Research)

PERFORMANCE COMPARISON BETWEEN BATTERIES AND SUPERCAPACITOR


PERFORMANCE COMPARISON	BETWEEN SUPERCAPACITOR AND LI-ION	
Function	Supercapacitor	Lithium-ion (general)
Charge time	1-10 seconds	10-60 minutes
Cycle life	1 million or 30,000h	500 and higher
Cell voltage	2.3 to 2.75V	3.6 to 3.7V
Specific energy (Wh/kg)	5 (typical)	100-200
Specific power (W/kg)	Up to 10,000	1,000 to 3,000
Cost per Wh	\$20 (typical)	\$0.50-\$1.00 (large system)
Service life (in vehicle)	10 to 15 years	5 to 10 years
Charge temperature	-40 to 65°C (-40 to 149°F)	0 to 45°C (32°to 113°F)
Discharge temperature	-40 to 65°C (-40 to 149°F)	-20 to 60°C (-4 to 140°F)

Source: Battery University

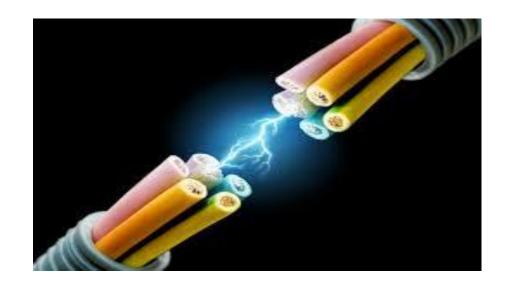

COMBINING BATTERY WITH SUPERCAPACITOR


HYBRID ENERGY STORAGE SYSTEM – SUPERCAPACITORS AND BATTERIES

BENEFITS OF HYBRID SYSTEM

OTHER APPLICATIONS

- Voltage Stabilizers
- Power source for laptops, mobile devices etc.
- Backup power system in missiles
- Diesel Engine start up in submarines and tanks
- Back up for uninterruptable power supplies (UPS)
- Elevators and cranes



CONCLUSIONS

- Supercapacitor-battery hybrid energy storage system has numerous advantages over stand alone battery storage system.
- Apart from supercapacitor's applications in Grid, they also have various applications in transportation systems and other industries.
- However, further research is needed in the enhancement of energy density and lowering the cost of supercapacitors in order for them to compete with other storage technologies.

...THANK YOU