UNIT I - MATRIX EIGENVALUE PROBLEM
 Eigen values and Eigen vectors of a real matrix

DEFINITION:

A system of mn numbers arranged in a rectangular array along m rows and n columns is called mxn matrix

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

Here A is the matrix of order mxn. It has m rows and n columns. Each of ' m '' n ' numbers is called an element of the matrix. Matrix A is denoted by $A=\left[a_{i j}\right]$

CHARACTERISTIC EQUATION

Let A be a given matrix. Let λ be a scalar. The equation $\operatorname{det}[A-\lambda I]=0$ or $|A-\lambda I|=0$ is called the characteristic equation of the matrix A.

Problems

1. Find the characteristic equation of $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$

Solution:

The Characteristic equation is given by $|A-\lambda I|=0$
$\left|\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right|-\lambda\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=0$
$\left|\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right|-\left|\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right|=0$

$$
\left|\begin{array}{cc}
1-\lambda & -1 \\
0 & 1-\lambda
\end{array}\right|=0
$$

$(1-\lambda)^{2}=0$
$\lambda^{2}-2 \lambda+1=0$ is the required Characteristic equation
2. Find the characteristic equation of $A=\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]$

Solution:

UNIT I - MATRIX EIGENVALUE PROBLEM
 Eigen values and Eigen vectors of a real matrix

The Characteristic equation is given by $|A-\lambda I|=0$
i.e.,
$\left|\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right|-\lambda\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=0$
$\left|\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right|-\left|\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right|=0$

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
-3 & 4-\lambda
\end{array}\right|=0
$$

$(1-\lambda)(4-\lambda)+6=0$
$4-\lambda-4 \lambda+\lambda^{2}+6=0$
$\lambda^{2}-5 \lambda+10=0$ is the required Characteristic Equation.

(Alter Method)

To find the Characteristic Equation of A ($\mathbf{3} \times 3$ matrix) is

$$
\lambda^{3}-c_{1} \lambda^{2}+c_{2} \lambda-c_{3}=0
$$

Where
$c_{1}=$ Sum of leading diagonal elements
$c_{2}=$ Sum of the minors of leading diagonal elements.
$\mathrm{c}=\operatorname{det}[\mathrm{A}]$

Problems:

1. Find the characteristic equation of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

Solution:

The Characteristic equation is given by

UNIT I - MATRIX EIGENVALUE PROBLEM
 Eigen values and Eigen vectors of a real matrix
 $\lambda^{3}-c_{1} \lambda^{2}+c_{2} \lambda-c_{3}=0$

Where
$c_{1}=$ Sum of leading diagonal elements

$$
\begin{gathered}
=-2+1+0 \\
=-1
\end{gathered}
$$

$c_{2}=$ Sum of the minors of leading diagonal elements.

$$
\begin{gathered}
=\left|\begin{array}{cc}
1 & -6 \\
-2 & 0
\end{array}\right|+\left|\begin{array}{cc}
-2 & -3 \\
-1 & 0
\end{array}\right|+\left|\begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array}\right| \\
=-12-3-6 \\
=-21
\end{gathered}
$$

$c_{3}=\operatorname{det}[\mathrm{A}]$

$$
=\left|\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right|
$$

$=-2(-12)-2(-6)-3(-3)$
$=24+12+9$
$=45$

Sub the values of a_{1}, a_{2}, a_{3} in characteristic equation

$$
\lambda^{3}-c_{1} \lambda^{2}+c_{2} \lambda-c_{3}=0
$$

We get $\quad \lambda^{3}+\lambda^{2}-21 \lambda-45=0$

UNIT I - MATRIX EIGENVALUE PROBLEM
 Eigen values and Eigen vectors of a real matrix

2. Find the characteristic equation of $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$

Solution:

The Characteristic equation is given by

$$
\lambda^{3}-c_{1} \lambda^{2}+c_{2} \lambda-c_{3}=0
$$

Where
$c_{1}=$ Sum of leading diagonal elements

$$
\begin{gathered}
=3+3+3 \\
=9
\end{gathered}
$$

$c_{2}=$ Sum of the minors of leading diagonal elements.

$$
\begin{gathered}
=\left|\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right| \\
=8+8+8 \\
=24
\end{gathered}
$$

$c_{3}=\operatorname{det}[\mathrm{A}]$

$$
\begin{gathered}
=\left|\begin{array}{ccc}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right| \\
=3(8)-1(4)+1(-4)
\end{gathered}
$$

$$
=24-4-4
$$

$$
=16
$$

Sub the values of c_{1}, c_{2}, c_{3} in characteristic equation $\lambda^{3}-c_{1} \lambda^{2}+c_{2} \lambda-c_{3}=0$

