
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROBLEM SOLVING TECHNIQUES AND C PROGRAMMING
I YEAR - I SEM

UNIT 2 – C Programming Basics

TOPIC 5 – Variables

11/3/2023 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

22/21

VARIABLES

Variable is basically nothing but the name of a memory location that we use for storing data.

Variables are the storage areas in a code that the program can easily manipulate.

Every variable in C language has some specific type- that determines the layout and the size of the memory of

the variable, the range of values that the memory can hold, and the set of operations that one can perform on

that variable.

The name of a variable can be a composition of digits, letters, and also underscore characters. The name of

the character must begin with either an underscore or a letter.

In the case of C, the lowercase and uppercase letters are distinct. It is because C is case-sensitive in nature.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

33/21

VARIABLES

 A variable is a data name that may be used to store a data value.

 A variable may take different values at different times during execution.

 Some examples of variables’ names are:
• Average
• height
• Total
• Counter_1
• class_strength

 variable names may consist of letters, digits, and the underscore(_) character

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT 4

Example:

int my_var = 22;

11/3/2023

55/21

RULES FOR NAMING VARIABLES

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

1. The name of the variable must not begin with a digit.

2. A variable name can consist of digits, alphabets, and even special

symbols such as an underscore (_).

3. A variable name must not have any keywords, for instance, float, int,

etc.

4. There must be no spaces or blanks in the variable name.

5. The C language treats lowercase and uppercase very differently, as it

is case sensitive. Usually, we keep the name of the variable in the lower

case.
11/3/2023

66/21

RULES FOR NAMING VARIABLES

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

Examples

int first_name; // it is correct

int var1; // it is correct

int 1var; // it is incorrect – the name of the variable should not start using a number

int my$var; // it is incorrect – no special characters should be in the name of the variable

char else; // there must be no keywords in the name of the variable

int my var; // it is incorrect – there must be no spaces in the name of the variable

11/3/2023

777/21

DECLARATION OF VARIABLES

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

Declaration of a variable in a computer programming language is a statement used to specify the variable name

and its data type.

Declaration tells the compiler about the existence of an entity in the program and its location.

Syntax

data_type variable_name1, variable_name2, variable_name3;

OR

data_type variable_name;

Example: int radius; char name[50],class; float kilometer;

11/3/2023

8888/21

PRIMARY TYPE DECLARATION

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

 A variable can be used to store a value of any data type.
• That is, the name has nothing to do with its type.

 The syntax for declaring a variable is as follows:
data-type v1,v2,....vn ;

 v1, v2,vn are the names of variables.
 Variables are separated by commas.
 A declaration statement must end with a semicolon.

 For example, valid declarations are:
• int count;
• int number, total;
• double ratio;

 int and double are the keywords to represent integer type and real type data values
respectively

11/3/2023

9999/21

PRIMARY TYPE DECLARATION

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

 A variable can be used to store a value of any data type.
• That is, the name has nothing to do with its type.

 The syntax for declaring a variable is as follows:
data-type v1,v2,....vn ;

 v1, v2,vn are the names of variables.
 Variables are separated by commas.
 A declaration statement must end with a semicolon.

 For example, valid declarations are:
• int count;
• int number, total;
• double ratio;

 int and double are the keywords to represent integer type and real type data values
respectively

11/3/2023

10101010/21

USER-DEFINED TYPE DECLARATION

 typedef Identifier:
• C supports a feature known as “type definition” that allows users to ‘define’ an “identifier”

that would represent an existing data type.

• The user-defined data type identifier can later be used to declare variables.

• It takes the general form:
» typedef type identifier;

• Where ‘type’ refers to an existing data type and “identifier” refers to the “new” name given to
the data type.

• Remember that the new type is ‘new’ only in name, but not the data type.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1111111111/21

USER-DEFINED TYPE DECLARATION

 Syntax: typedef type identifier;

 Some examples of type definition are:
typedef int units;
typedef float marks;

• Here, units symbolizes int and marks symbolizes float.
 They can be later used to declare variables as follows:

units batch1, batch2;
marks name1[50], name2[50];

• Here, batch1 and batch2 are declared as int variable and name1[50] and name2[50] are
declared as floating point array variables.

 The main advantage of typedef is that we can create meaningful data type names for increasing
the readability of the program.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

121212121212/21

USER-DEFINED TYPE DECLARATION

 enum Identifier:
 Another user-defined data type is enumerated data type provided by ANSI standard.
 It is defined as follows:

enum identifi er {value1, value2, ... valuen};
 The “identifier” is a user-defined enumerated data type which can be used to declare variables

that can have one of the values enclosed within the braces (known as enumeration constants).
 After this definition, we can declare variables to be of this ‘new’ type as below:

enum identifier v1, v2, ... vn;
 The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ...

Value n.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

13131313131313/21

USER-DEFINED TYPE DECLARATION

 Syntax: enum identifier {value1, value2, ... valuen};
 An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_start, week_end;

week_start = Monday;
week_end = Sunday;

if(week_st = = Tuesday)
week_end = = Monday;

 The compiler automatically assigns integer digits beginning with “0” to all the enumeration
constants.

 That is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on.
 However, the automatic assignments can be overridden by assigning values explicitly to the

enumeration constants.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1414141414141414/21

DECLARATION OF STORAGE CLASS

 Storage classes in C are used

 to determine the lifetime,

 visibility,

 memory location, and

 initial value of a variable.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1515151515151515/21

DECLARATION OF STORAGE CLASS

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1616161616161616/21

DECLARATION OF STORAGE CLASS - Auto

• Automatic variables are allocated memory automatically at runtime.

• The visibility of the automatic variables is limited to the block in which they are defined.

• The scope of the automatic variables is limited to the block in which they are defined. The automatic

variables are initialized to garbage by default.

• The memory assigned to automatic variables gets freed upon exiting from the block.

• The keyword used for defining automatic variables is auto.

• Every local variable is automatic in C by default.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1717171717171717/21

DECLARATION OF STORAGE CLASS - Auto

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1818181818181818/21

DECLARATION OF STORAGE CLASS - Auto

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

1919191919191919/21

DECLARATION OF STORAGE CLASS - Static

• The variables defined as static specifier can hold their value between the multiple function calls.

• Static local variables are visible only to the function or the block in which they are defined.

• A same static variable can be declared many times but can be assigned at only one time.

• Default initial value of the static integral variable is 0 otherwise null.

• The visibility of the static global variable is limited to the file in which it has declared.

• The keyword used to define static variable is static.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

2020202020202020/21

DECLARATION OF STORAGE CLASS - Static

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

2121212121212121/21

DECLARATION OF STORAGE CLASS - Static

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

2222222222222222/21

DECLARATION OF STORAGE CLASS - Register

• The variables defined as the register is allocated the memory into the CPU registers depending upon the

size of the memory remaining in the CPU.

• We can not dereference the register variables, i.e., we can not use &operator for the register variable.

• The access time of the register variables is faster than the automatic variables.

• The initial default value of the register local variables is 0.

• The register keyword is used for the variable which should be stored in the CPU register. However, it is

compiler?s choice whether or not; the variables can be stored in the register.

• We can store pointers into the register, i.e., a register can store the address of a variable.

• Static variables can not be stored into the register since we can not use more than one storage specifier for

the same variable.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

2323232323232323/21

DECLARATION OF STORAGE CLASS - Register

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

2424242424242424/21

DECLARATION OF STORAGE CLASS - External

• The external storage class is used to tell the compiler that the variable defined as extern is declared with

an external linkage elsewhere in the program.

• The variables declared as extern are not allocated any memory. It is only declaration and intended to

specify that the variable is declared elsewhere in the program.

• The default initial value of external integral type is 0 otherwise null.

• We can only initialize the extern variable globally, i.e., we can not initialize the external variable within

any block or method.

• An external variable can be declared many times but can be initialized at only once.

• If a variable is declared as external then the compiler searches for that variable to be initialized

somewhere in the program which may be extern or static. If it is not, then the compiler will show an error.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

11/3/2023 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT 25

DECLARATION OF STORAGE CLASS - Extern

26262626262626262626/21

DECLARATION OF STORAGE CLASS

 There are four storage class specifiers:

 The storage class is another qualifier (like long or unsigned) that can be added to a variable declaration as
shown below:

auto int count;
register char ch;
static int x;
extern long total;

 Static and external (extern) variables are automatically initialized to zero.
 Automatic (auto) variables contain undefined values (known as ‘garbage’) unless they are initialized

explicitly.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

2727272727272727272727/21

DECLARATION OF STORAGE CLASS

#include<stdio.h>
#include<conio.h>
Void main()
{

int static c= 340;
Printf(“C = %d”, c);
{

int c = 450;
Printf(“C = %d”, c);

}
Printf(“C = %d”, c);
getch();

}

Output:
C = 340
C = 340
C = 340

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT

#include<stdio.h>
#include<conio.h>
Void main()
{

int c= 340;
Printf(“C = %d”, c);
{

int c = 450;
Printf(“C = %d”, c);

}
Printf(“C = %d”, c);
getch();

}

Output:
C = 340
C = 450
C = 340

11/3/2023

2828282828282828282828/21

ASSIGNING VALUES TO VARIABLES

 Variables are created for use in program statements such as:
value = amount + inrate * amount;
while (year <= PERIOD)
{

....

....
year = year + 1;

}
 In the first statement, the numeric value stored in the variable inrate is multiplied by the value stored in

amount and the product is added to amount.
 The result is stored in the ‘variable’ value.
 This process is possible only if the variables amount and inrate have already been given values.
 The variable value is called the target variable.
 While all the variables are declared for their type, the variables that are used in expressions (on the right

side of equal (=) sign of a computational statement) must be assigned values before they are encountered
in the program.

 Similarly, the variable year and the symbolic constant PERIOD in the while statement must be assigned
values before this statement is encountered.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

292929292929292929292929/21

ASSIGNMENT STATEMENT

 Values can be assigned to variables using the assignment operator “= “ as follows:
variable_name = constant;

 Ex. are:
initial_value = 0;
fi nal_value = 100;
balance = 75.84;
yes = ‘x’;

 C permits multiple assignments in one line.
 For example

initial_value = 0; fi nal_value = 100; are valid statements.

 An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set equal to
the value of the quantity (or the expression) on the right.

 The statement:
year = year + 1;

• means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

303030303030303030303030/21

ASSIGNMENT STATEMENT

 During assignment operation, C converts the type of value on the right-hand side to the type on the left.
 This may involve truncation when real value is converted to an integer.
 It is also possible to assign a value to a variable at the time the variable is declared.
 This takes the following form:

data-type variable_name = constant;
 Some examples are:

int fi nal_value = 100;
char yes = ‘x’;
double balance = 75.84;

 The process of giving initial values to variables is called initialization.
 C permits the initialization of more than one variables in one statement using multiple assignment

operators.
 For example

p = q = s = 0;
x = y = z = 10;

 are valid. The first statement initializes the variables p, q, and s to zero while the second initializes x, y,
and z with 10.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

31313131313131313131313131/21

READING DATA FROM KEYBOARD

 Another way of giving values to variables is to input data through keyboard using the scanf function.
 It is a general input function available in C and is very similar in concept to the printf function.
 It works much like an INPUT statement.
 The general format of scanf is as follows:

scanf(“control string”, &variable1,&variable2,....);
 The control string contains the format of data being received.
 The ampersand symbol & before each variable name is an operator that specifies the variable name’s

address.

#include <stdio.h> OUTPUT:
int main() Enter two integers: 12 11
{ 12+11 = 23
int number1, number2, sum;
printf("Enter two integers: ");
scanf("%d %d", &number1, &number2);
sum = number1 + number2;
printf("%d + %d = %d", number1, number2, sum);
}

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

32323232323232323232323232/21

READING DATA FROM KEYBOARD

#include <stdio.h> OUTPUT:
int main() Enter two integers: 12 11
{ 12+11 = 23
int number1, number2, sum;
printf("Enter two integers: ");
scanf("%d %d", &number1, &number2);
sum = number1 + number2;
printf("%d + %d = %d", number1, number2, sum);
}

scanf("%d %d", &number1, &number2);
 When this statement is encountered by the computer, the execution stops and waits for the value of the

variable number to be typed in.
 Since the control string “%d” specifies that an integer value is to be read from the terminal, we have to

type in the value in integer form.
 Once the number is typed in and the ‘Return’ Key is pressed, the computer then proceeds to the next

statement.
 Thus, the use of scanf provides an interactive feature and makes the program ‘user friendly’.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

3333333333333333333333333333/21

READING DATA FROM KEYBOARD

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

34343434343434343434343434/21

DEFINING SYMBOLIC CONSTANTS

#define symbolic-name value of constant

 Valid examples of constant definitions are:
#define STRENGTH 100
#define PASS_MARK 50
#define MAX 200
#define PI 3.14159

 Symbolic names are sometimes called constant identifiers.
 Since the symbolic names are constants (not variables), they do not appear in declarations.

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

35353535353535353535353535/21

DEFINING SYMBOLIC CONSTANTS
 The following rules apply to a #define statement which define a symbolic constant:

1. Symbolic names have the same form as variable names. (Symbolic names are written in CAPITALS to visually
distinguish them from the normal variable names, which are written in lowercase letters.

2. No blank space between the pound sign ‘#’ and the word define is permitted.

3. ‘#’ must be the first character in the line.

4. A blank space is required between #define and symbolic name and between the symbolic name and
the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value within the program by
using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the program
(the usual practice is to place them in the beginning of the program).

12/12/2020 Variables / Problem Solving Technique and C Programming/ Aruna A/IT/SNSCT11/3/2023

