
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution

DEPARTMENT OF INFORMATION TECHNOLOGY

23CST101 PROBLEM SOLVING and C PROGRAMMING
I YEAR - I SEM

UNIT II – C PROGRAMMING BASICS

STRUCTURE OF A C PROGRAM

Structure of a C program

Basically the structure of a C program divides into 6 sections and they are,

01

Documentation

02

Preprocessor

03

Definition

04

Global declaration

05

Main function

06

User defined functions

Documentation Section
 It includes the statement specified at the beginning of a program, such as a

program's name, date, description, and title, which is represented using commands

 Single line commands will be represented by //

 Multi – line commands will be represented as /* ……. */

Preprocessor Section

#include<stdio.h>
#include<conio.h>

//program1.c

/*
…
Overview of code
…
*/

Preprocessor Section (contd..)

 The preprocessor section contains all the header files used in a program. It informs the

system to link the header files to the system libraries

 A header file in C/C++ contains:

i) Function definitions ii) Data type definitions iii) Macros

 Header files offer these features by importing them into your program with the help of

a preprocessor directive called #include.

 These preprocessor directives are responsible for instructing the C/C++ compiler that

these files need to be processed before compilation.

Contd….

 Every C program should necessarily contain the header file <stdio.h> which

stands for standard input and output used to take input with the help of

scanf() function and display the output using printf() function.

 The source file contains #include which is responsible for directing the

C/C++ compiler that this file needs to be processed before compilation and

includes all the necessary data type and function definitions

Define Section

 The define section comprises of different constants declared using the define keyword

#define a = 4

Global declaration
 The global section comprises of all the global declarations in the program.

 Anything which is declared as global can be used throughout the entire program

 It should be declared before the main function

Main function
 main() is the first function to be executed by the computer.

 It is necessary for a code to include the main(). It is like any other function available in the C

library.

 Parenthesis () are used for passing parameters (if any) to a function.

Declaration of main()

main() function can be declared in three ways

 main()

 void main() - specifies that program will not return any value

 int main() - specifies that program can return integer type data

main()

{

int i = 2;

if(i<5)

{

i++;

}

}

Local
Declarations

Statements

Expressions

User defined functions

 The user defined functions specified the functions specified as per the

requirements of the user.

 For example, color(), sum(), division(), etc.

Basic Syntax

#include<stdio.h> //(Header Files)

main() //(Main function)

{

// Statements to be executed;

}

Editor and file creation

Editor used: Turbo C++

Example

Example

Example

Example

Example

Example

COMPILATION & LINKING

What is Compilation?

The compilation is a process of converting the source code into object

code. It is done with the help of the compiler. The compiler checks the source code

for the syntactical or structural errors, and if the source code is error-free, then it

generates the object code

The c compilation process converts the source code taken as input into the object code

or machine code. The compilation process can be divided into four steps, i.e.,

Pre-processing, Compiling, Assembling, and Linking.

Compilation process

Preprocessor

 The source code is the code which is written in a text editor and the source code file is

given an extension ".c".

 The preprocessor takes the source code as an input, and it removes all the comments

from the source code. The preprocessor takes the preprocessor directive and interprets it.

 For example, if <stdio.h>, the directive is available in the program, then the preprocessor

interprets the directive and replace this directive with the content of the 'stdio.h' file.

Compiler
 The code which is expanded by the preprocessor is passed to the compiler. The compiler

converts this code into assembly code. Or we can say that the C compiler converts the pre-

processed code into assembly code.

 The compiler won't give an error unless the source code is not well-formed.

Assembler
 The assembly code is converted into object code by using an assembler. The name of the

object file generated by the assembler is the same as the source file.

 The extension of the object file in DOS is '.obj,' and in UNIX, the extension is 'o'.

 If the name of the source file is 'hello.c', then the name of the object file would be 'hello.obj'.

 These object files can be used as static libraries as well.

Linker
 Mainly, all the programs written in C use library functions. These library functions are

pre-compiled, and the object code of these library files is stored with '.lib' (or '.a') extension.

 The main working of the linker is to combine the object code of library files with the object

code of our program.

 Sometimes the situation arises when our program refers to the functions defined in other

files; then linker plays a very important role in this.

 It links the object code of these files to our program.

 Therefore, we conclude that the job of the linker is to link the object code of our program

with the object code of the library files and other files.

Linker (contd…)

 The output of the linker is the executable file.

 The name of the executable file is the same as the source file but differs only in their

extensions.

 In DOS, the extension of the executable file is '.exe', and in UNIX, the executable file

can be named as 'a.out'.

 For example, if we are using printf() function in a program, then the linker adds its

associated code in an output file and sends to Loader.

Loader
Whenever we give the command to execute a particular program, the loader

comes into work. The loader will load the .exe file in RAM and inform the CPU with the

starting point of the address where this program is loaded.

hello.c

#include<stdio.h>

#include<conio.h>

int main()

{

printf(“C programming”);

return 0;

}

Example Program

Flow of the program hello.c

Executable code
hello . exe

Object code

hello . obj

Assembly code
hello . s

hello . i

Expanded source
code

C Program
hello.c

Pre
processor

Compiler Assembler Linker Loader Execution

