SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

Definition

Let $f(x, y, \alpha)=0$ be a single parameter family of curves, where α is the parameter. The envelope of this family of curves is a curve which touches every member of the family.

1. Find the envelope of the family of straight lines $y=m x+\frac{1}{m}$.

$$
\text { Soln: } \quad y=m x+\frac{1}{m} \Rightarrow m y=m^{2} x+1
$$

$\Rightarrow x m^{2}-y m+1=0$, which is a quadratic in the parameter m.

$$
\text { Here }^{A}=x, B=-y, C=1
$$

\therefore The envelope is $B^{2}-4 A C=0$

$$
\begin{array}{lr}
\Rightarrow & y^{2}-4 x=0 \\
\Rightarrow & y^{2}=4 x .
\end{array}
$$

2. Find the envelope of the family of lines

$$
y=m x \pm \sqrt{a^{2} m^{2}-b^{2}} \text {, where } m \text { is the parameter. }
$$

Soln: Given the family is $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}, m$ is the parameter.

$$
\begin{aligned}
& \Rightarrow y-m x= \pm \sqrt{a^{2} m^{2}-b^{2}} \\
& \Rightarrow(y-m x)^{2}=a^{2} m^{2}-b^{2} \\
& \Rightarrow y^{2}-2 m x y+m^{2} x^{2}=a^{2} m^{2}-b^{2}
\end{aligned}
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

$$
\Rightarrow m^{2}\left(x^{2}-a^{2}\right)-2 m x y+\left(y^{2}+b^{2}\right)=0
$$

This is a quadratic in m
Here $A=x^{2}-a^{2}, B=-2 x y, C=y^{2}+b^{2}$
\therefore The envelope is $B^{2}-4 A C=0$

$$
\begin{aligned}
& \Rightarrow 4 x^{2} y^{2}-4\left(x^{2}-a^{2}\right)\left(y^{2}+b^{2}\right)=0 \\
& \Rightarrow x^{2} y^{2}-\left(x^{2} y^{2}+b^{2} x^{2}-a^{2} y^{2}-a^{2} b^{2}\right)=0 \\
& \Rightarrow b^{2} x^{2}-a^{2} y^{2}-a^{2} b^{2}=0 \\
& \Rightarrow b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \\
& \Rightarrow \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

3. Find the envelope of the straight lines represented by

$$
x \cos \alpha+y \sin \alpha=a \sec \alpha, \text { where } \alpha \text { is a parameter. }
$$

Soln: Given $x \cos \alpha+y \sin \alpha=a \sec \alpha$
Dividing by $\cos \alpha, \quad x+y \tan \alpha=a \sec ^{2} \alpha$

$$
=a\left(1+\tan ^{2} \alpha\right)
$$

$\Rightarrow \quad a \tan ^{2} \alpha-y \tan \alpha+(a-x)=0$
which is a quadratic in $\tan \alpha$

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Here $A=a, \quad B=-y, \quad C=a-x$
\therefore The envelope is $B^{2}-4 A C=0 \quad \Rightarrow \quad y^{2}-4 a(a-x)=0$, which is the envelope.
is the envelope and it is an ellipse.
4. Find the envelope of the family of straight lines $\frac{x}{a}+\frac{y}{b}=1$, where the parameters a and b are related by the equation $a^{n}+b^{n}=c^{n}, c_{\text {being a constant. }}$.

Soln: Given $\frac{x}{a}+\frac{y}{b}=1$

$$
\begin{equation*}
a^{n}+b^{n}=c^{n} \tag{2}
\end{equation*}
$$

Differentiating (1) and (2) with respect to a, treating b as a function of a, we get
(1) $\Rightarrow \frac{x}{a}+\frac{y}{b}=1$ Diff. w.r.to a

$$
\begin{equation*}
-\frac{x}{a^{2}}-\frac{y}{b^{2}} \frac{d b}{d a}=0 \Rightarrow \frac{d b}{d a}=-\frac{b^{2} x}{a^{2} y} \tag{3}
\end{equation*}
$$

and (2) $\Rightarrow a^{n}+b^{n}=c^{n}$ Diff. w.r.to a

$$
\begin{equation*}
n a^{n-1}+n b^{n-1} \cdot \frac{d b}{d a}=0 \Rightarrow \frac{d b}{d a}=-\frac{a^{n-1}}{b^{n-1}} \tag{4}
\end{equation*}
$$

From (3) and (4); $\quad \frac{-b^{2} x}{a^{2} y}=-\frac{a^{n-1}}{b^{n-1}}$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Coimbatore-641035.
$\Rightarrow \quad \frac{x}{a^{n+1}}=\frac{y}{b^{n+1}}$
$\Rightarrow \quad \frac{\frac{x}{a}}{a^{n}}=\frac{\frac{y}{b}}{b^{n}}=\frac{\frac{x}{a}+\frac{y}{b}}{a^{n}+b^{n}}=\frac{1}{c^{n}} \quad[$ Using (2)]
$\therefore \quad \frac{x}{a^{n+1}}=\frac{1}{c^{n}}$
$\Rightarrow \quad a=\left(c^{n} x\right)^{\frac{1}{n+1}}$

SImilarly $\quad b=\left(c^{n} y\right)^{\frac{1}{n+1}}$
Substitute in (1)
$\frac{x}{c^{n / n+1} \cdot x^{1 / n+1}}+\frac{y}{c^{n / n+1} \cdot y^{1 / n+1}}=1$
$\Rightarrow x^{\frac{n}{n+1}}+y^{\frac{n}{n+1}}=c^{\frac{n}{n+1}}$
which is the required envelope.

