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Introduction 

Bayesian decision theory refers to the statistical approach based on tradeoff quantification 

among various classification decisions based on the concept of Probability(Bayes Theorem) 

and the costs associated with the decision. 

It is basically a classification technique that involves the use of the Bayes Theorem which is 

used to find the conditional probabilities. 

In Statistical pattern Recognition, we will focus on the statistical properties of patterns that 

are generally expressed in probability densities (pdf’s and pmf’s), and this will command 

most of our attention in this article and try to develop the fundamentals of the Bayesian 

decision theory. 

Prerequisites  

Random Variable 

A random variable is a function that maps a possible set of outcomes to some values like 

while tossing a coin and getting head H as 1 and Tail T as 0 where 0 and 1 are random 

variables. 

Bayes Theorem 

The conditional probability of A given B, represented by P(A | B) is the chance of occurrence 

of A given that B has occurred. 



P(A | B) = P(A,B)/P(B) or 

By Using the Chain rule, this can also be written as: 

P(A,B) = P(A|B)P(B)=P(B|A)P(A) 

P(A | B) = P(B|A)P(A)/P(B)    ——-  (1) 

Where, P(B) = P(B,A) + P(B,A’) = P(B|A)P(A) + P(B|A’)P(A’) 

Here, equation (1) is known as the Bayes Theorem of probability 

Our aim is to explore each of the components included in this theorem. Let’s explore step by 

step: 

(a) Prior or State of Nature: 

 Prior probabilities represent how likely is each Class is going to occur. 

 Priors are known before the training process. 

 The state of nature is a random variable P(wi). 

 If there are only two classes, then the sum of the priors is P(w1) + P(w2)=1, if the classes are 

exhaustive. 

(b) Class Conditional Probabilities: 

 It represents the probability of how likely a feature x occurs given that it belongs to the 

particular class. It is denoted by,   P(X|A) where x is a particular feature 

 It is the probability of how likely the feature x occurs given that it belongs to the class wi. 

 Sometimes, it is also known as the Likelihood. 

 It is the quantity that we have to evaluate while training the data. During the training process, 

we have input(features) X labeled to corresponding class w and we figure out the likelihood 

of occurrence of that set of features given the class label. 

(c) Evidence: 

 It is the probability of occurrence of a particular feature i.e. P(X). 

 It can be calculated using the chain rule as,  P(X) = Σin P(X | wi) P(wi) 



 As we need the likelihood of class conditional probability is also figure out evidence values 

during training. 

(d) Posterior Probabilities: 

 It is the probability of occurrence of Class A when certain Features are given 

 It is what we aim at computing in the test phase in which we have testing input or features 

(the given entity) and have to find how likely trained model can predict features belonging to 

the particular class wi. 

  

For a better understanding of the above theory, we consider an example 

Problem Description 

Suppose we have a classification problem statement where we have to classify among the 

object-1 and object-2 with the given set of features X = [x1, x2, …, xn]T. 

 Objective 

The main objective of designing a such classifier is to suggest actions when presented with 

unseen features, i.e, object not yet seen i.e, not in training data. 

In this example let w denotes the state of nature with w = w1 for object-1 and w = w2 for 

object-2. Here, we need to know that in reality, the state of nature is so unpredictable that we 

generally consider that was variable that is described probabilistically. 

 Priors 

 Generally, we assume that there is some prior value P(w1) that the next object is object-1 and 

P(w2) that the next object is object-2. If we have no other object as in this problem then the 

sum of their prior is 1 i.e. the priors are exhaustive. 

 The prior probabilities reflect the prior knowledge of how likely we will get object-1 and 

object-2. It is domain-dependent as the prior may change based on the time of year they are 

being caught. 



It sounds somewhat strange and when judging multiple objects (as in a more realistic 

scenario) makes this decision rule stupid as we always make the same decision based on the 

largest prior even though we know that any other type of objective also might appear 

governed by the leftover prior probabilities (as priors are exhaustive in nature). 

Consider the following different scenarios: 

 If P(ω1)>>> P(ω2), our decision in favor of ω1 will be correct most of the time we predict. 

 But if P(ω1)= P(ω2), half probable of our prediction of being right. In general, the probability 

of error is the minimum of P(ω1) and P(ω2), and later in this article, we will see that under 

these conditions no other decision rule can yield a larger probability of being correct. 

Feature Extraction process (Extract feature from the images) 

A suggested set of features- Length, width, shapes of an object, etc. 

In our example, we use the width x, which is more discriminatory to improve the decision 

rule of our classifier. The different objects will yield different variable-width readings and we 

usually see this variability in probabilistic terms and also we consider x to be a continuous 

random variable whose distribution depends on the type of object wj, and is expressed as 

p(x|ωj) (probability distribution function pdf as a continuous variable) and known as the 

class-conditional probability density function. Therefore, 

The pdf p(x|ω1) is the probability density function for feature x given that the state of nature 

is ω1 and the same interpretation for p(x|w2). 

 

Fig. Picture Showing pdf for both classes 

Image Source: Google Images 

Suppose that we are well aware of both the prior probabilities P(ωj) and the conditional 

densities p(x|ωj). Now, we can arrive at the Bayes formula for finding posterior probabilities: 



 

Fig. Formula of Bayes Theorem 

Image Source: Google Images 

Bayes’ formula gives us intuition that by observing the measurement of x we can convert the 

prior P(ωj) to the posteriors, denoted by P(ωj|x) which is the probability of ωj given that 

feature value x has been measured. 

p(x|ωj) is known as the likelihood of ωj with respect to x. 

The evidence factor, p(x), works as merely a scale factor that guarantees that the posterior 

probabilities sum up to one for all the classes. 

Bayes’ Decision Rule 

The decision rule given the posterior probabilities is as follows 

If P(w1|x) > P(w2|x) we would decide that the object belongs to class w1, or else class w2. 

Probability of Error 

To justify our decision we look at the probability of error, whenever we observe x, we have, 



P(error|x)= P(w1|x) if we decide w2, and P(w2|x) if we decide w1 

As they are exhaustive and if we choose the correct nature of an object by probability P then 

the leftover probability (1-P) will show how probable is the decision that it the not the 

decided object. 

We can minimize the probability of error by deciding the one which has a greater posterior 

and the rest as the probability of error will be minimum as possible. So we finally get, 

P(error|x) = min [P(ω1|x),P(ω2|x)] 

And our Bayes decision rule as, 

Decide ω1 if P(ω1|x) >P(ω2|x); otherwise decide ω2 

This type of decision rule highlights the role of the posterior probabilities. With the help 

Bayes theorem, we can express the rule in terms of conditional and prior probabilities. 

The evidence is unimportant as far as the decision is concerned. As we discussed earlier it is 

working as just a scale factor that states how frequently we will measure the feature with 

value x; it assures P(ω1|x)+ P(ω2|x) = 1. 

So by eliminating the unrequired scale factor in our decision rule we have, the similar 

decision rule by Bayes theorem as, 

Decide ω1 if p(x|ω1)P(ω1) >p(x|ω2)P(ω2); otherwise decide ω2 

Now, let’s consider 2 cases: 

 Case-1: If class conditionals are equal i.e, p(x|ω1)= p(x|ω2), then we arrive at our premature 

decision rule governed by just priors. 

 Case-2: On the other hand, if priors are equal i.e, P(ω1)= P(ω2) then the decision is entirely 

based on class conditionals p(x|ωj). 

This completes our example formulation! 

Generalization of the preceding ideas for Multiple Features and Classes 

Bayes classification: Posterior, likelihood, prior, and evidence 



P(wi | X)= P(X | wi) P(wi) / P(X) 

Posterior = Likelihood* Prior/Evidence 

We now discuss those cases which have multiple features as well as multiple classes, 

Let the Multiple Features be X1, X2, … Xn and Multiple Classes be w1, w2, … wn, then: 

P(wi | X1, …. Xn) = P(X1,…. , Xn|wi)*P(wi)/P(X1,… Xn) 

Where,  

Posterior = P(wi | X1, …. Xn) 

Likelihood = P(X1,…. , Xn|wi) 

Prior = P(wi) 

Evidence = P(X1,… ,Xn) 

In cases of the same incoming patterns, we might need to use a drastically different cost 

function, which will lead to different actions altogether. Generally, different decision tasks 

may require features and yield boundaries quite different from those useful for our original 

categorization problem. 

So, In the later articles, we will discuss the Cost function, Risk Analysis, and decisive 

action which will further help to understand the Bayes decision theory in a better way. 

Parametric Methods: The basic idea behind the parametric method is that there is a set of 

fixed parameters that uses to determine a probability model that is used in Machine 

Learning as well. Parametric methods are those methods for which we priory knows that 

the population is normal, or if not then we can easily approximate it using a normal 

distribution which is possible by invoking the Central Limit Theorem. Parameters for 

using the normal distribution is as follows:  

 Mean 

 Standard Deviation 

Eventually, the classification of a method to be parametric is completely depends on the 

presumptions that are made about a population. There are many parametric methods 

available some of them are: 



 Confidence interval used for – population mean along with known standard deviation. 

 The confidence interval is used for – population means along with the unknown 

standard deviation. 

 The confidence interval for population variance. 

 The confidence interval for the difference of two means, with unknown standard 

deviation. 

Nonparametric Methods: The basic idea behind the parametric method is no need to 

make any assumption of parameters for the given population or the population we are 

studying. In fact, the methods don’t depend on the population. Here there is no fixed set of 

parameters are available, and also there is no distribution (normal distribution, etc.) of any 

kind is available for use. This is also the reason that nonparametric methods are also 

referred to as distribution-free methods. Nowadays Non-parametric methods are gaining 

popularity and an impact of influence some reasons behind this fame is: 

 The main reason is that there is no need to be mannered while using parametric 

methods. 

 The second important reason is that we do not need to make more and more 

assumptions about the population given (or taken) on which we are working on. 

 Most of the nonparametric methods available are very easy to apply and to understand 

also i.e. the complexity is very low. 
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