UNIT I – MATRIX EIGENVALUE PROBLEM Properties of Eigen values and Eigen vectors

PROPERTIES OF EIGEN VALUES

- The sum of eigen values of the matrix A is equal to the sum of its diagonal elements. i,e,
 Trace of A
- 2. The product of the eigen values of a matrix A is equal to its determinant.
- 3. If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigen values of matrix A then $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, ..., \frac{1}{\lambda_n}$ are the eigen values of A^{-1} .
- 4. If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigen values of matrix A then $\lambda_1^m, \lambda_2^m, ..., \lambda_n^m$ are the eigen values of A^m .(m is a positive integer)
- 5. If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigen values of matrix A then $k\lambda_1, k\lambda_2, ..., k\lambda_n$ are the eigen values of the matrix kA
- 6. If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigen values of matrix A then the matrix A + kI has the eigen values $k + \lambda_1, k + \lambda_2, ..., k + \lambda_n$
- 7. If $\lambda_1, \lambda_2, ... \lambda_n$ are the eigen values of matrix A then the matrix A kI has the eigen values $\lambda_1 k, \lambda_2 k, ... \lambda_n k$
- 8. Every square matrix and its transpose have the same eigen values.
- 9. The eigen values of a triangular matrix are its diagonal elements.

PROPERTIES OF EIGEN VECTORS

- 1. If all the eigenvalues $\lambda_1, \lambda_2, ... \lambda_n$ of a matrix are distinct then the corresponding eigen vectors $x_1, x_2, ... x_n$ will be linearly independent.
- 2. If two or more eigen values of a matrix are equal, then the eigen vectors may be either linearly independent or linearly dependent.
- 3. The eigen vectors corresponding to distinct eigen values of real symmetric matrix is orthogonal.

PROBLEMS BASED ON PROPERTIES

1. Find the sum and product of Eigen values of
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

Solution:

UNIT I – MATRIX EIGENVALUE PROBLEM Properties of Eigen values and Eigen vectors

Sum of Eigen values of a matrix A = Sum of main diagonal elements of its matrix

$$= 3 + 5 + 3$$

 $= 11$

Product of Eigen values of a matrix A = |A|

$$= \begin{vmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{vmatrix}$$

$$= 3(15-1) + 1(-3+1) + 1(1-5)$$

$$= 42 - 2 - 4$$

$$= 36$$

2. The Product of Eigen values of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigen

value.

Solution:

Let the eigen values be $\lambda_1, \lambda_2, \lambda_3$

Given

$$\lambda_1 \lambda_2 = 16 \rightarrow (1)$$

We know that,

Product of Eigen values of a matrix A = |A|

$$\lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix}$$
$$= 6(9-1) + 2(-6+2) + 2(2-6)$$
$$= 48 - 8 - 8$$

$$\lambda_1 \lambda_2 \lambda_3 = 32 \rightarrow (2)$$

UNIT I – MATRIX EIGENVALUE PROBLEM Properties of Eigen values and Eigen vectors

Sub (1) in (2), we get $16\lambda_3 = 32$

$$\Lambda_3 = 2$$

Hence the third eigen value is 2.

3. If 2 and 3 are the eigen values of $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$. Find the eigen value of A^{-1} .

Solution:

Let the eigen values be $\lambda_1, \lambda_2, \lambda_3$

Given, two eigen values are 2 and 3.

$$\lambda_1 = 2$$
, $\lambda_2 = 3 \rightarrow (1)$

We know that, λ

Sum of Eigen values of a matrix A = Sum of main diagonal elements of its matrix

$$\lambda_1 + \lambda_2 + \lambda_3 = 3 - 3 + 7$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 7 \rightarrow (2)$$

Sub (1) in (2) we get

$$2 + 3 + \lambda_3 = 7$$

$$\lambda_3 = 2$$

The eigen values of A^{-1} are λ_1^{-1} , λ_2^{-1} , λ_3^{-1}

i.e,
$$(2)^{-1}$$
, $(3)^{-1}$, $(2)^{-1}$

i.e,
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{2}$