UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - Signed operand multiplication- fast multiplication – **Integer division** – Floating point numbers and operations

Recap the previous Class

Ms.A.Aruna/AP/IT/SEM 3/COA

Introduction

- Division is more complex than multiplication.
- *Example*: Typical values in Pentium-3 processor.
- Not easy to construct high-speed dividers.
- The ratios have not changed much in later processors.

Instruction	Latency	Cycles / Issue
Load / Store	3	1
Integer Multiply	4	1
Integer Divide	36	36
Floating-point Add	3	1
Floating-point Multiply	5	2
Floating-point Divide	38	38

The Process of Integer Division

- •In integer division, a *divisor* M and a *dividend* D are given.
- •The objective is to find a third number Q, called the *quotient*,

such that $\mathbf{D} = \mathbf{Q} \times \mathbf{M} + \mathbf{R}$ where R is the *remainder* such that $0 \le R < M$.

•The relationship $D = Q \times M$ suggests that there is a close correspondence between division and multiplication.

-Dividend, quotient and divisor correspond to product, multiplicand and multiplier, respectively.

Ms.A.Aruna/AP/IT/SEM3/COA

 One of the simplest division methods is the sequential digit-by-digit algorithm similar to that used in penciland-paper methods.

Divisor M 11	0 1 1 0	Quotient $Q = Q_0 Q_1 Q_2 Q_3$ Dividend $D = R_0$
	110	$Q_0.M$ (Does not go; $Q_0 = 0$)
	100101	R1
$D = 37 = (100101)_2$	- 110	$Q_1 \cdot 2^{-1} \cdot M$ (Does go; $Q_1 = 1$)
$M = 6 = (1 1 0)_2$	01101	R ₂
Quotient Q = 6	- 110	$Q_2 \cdot 2^{-2} \cdot M$ (Does go; $Q_2 = 1$)
Remainder R = 1	0001	R ₃
	110	$Q_3.2^{-3}.M$ (Does not go; $Q_3 = 0$)
	001	$R_4 = Remainder R$

Ms.A.Aruna/AP/IT/SEM3/COA

INSTITUTIONS

- Machine implementation:
 - For hardware implementation, it is more convenient to shift the partial remainder to the left relative to a fixed divisor; thus

 $R_{i+1} = 2R_i - Q_i M$ (instead of $R_{i+1} = R_i - Q_i 2^{-i} M$)

– The final partial remainder is the required remainder shifted to the left, so that $R = 2^{-3} \cdot R_4$

Ms.A.Aruna/AP/IT/SEM3/COA

INSTITUTIONS

Basic Steps

Repeat the following steps n times:

a) Shift the dividend one bit at a time starting into register A.

b)Subtract the divisor M from this register A (*trial subtraction*).

c) If the result is negative (*i.e. not going*):

- Add the divisor M back into the register A (*i.e. restoring back*).
- Record 0 as the next quotient bit.

d)If the result is positive:

- Do not restore the intermediate result.
- Record 1 as the next quotient bit.

Ms.A.Aruna/AP/IT/SEM3/COA

A Simple Example: 8/3 for 4-bit representation (n=4)

Initially:	00000	1000	Shift:	00100	000-
	00011		Subtract:	<u> </u>	
Shift:	00001	000-	Set Q ₀ :	00001	\cap
Subtract:			120	0 0 0 0 0	000(1)
Set 0 ·	(11110)		Shift:	00010	001-
Sec x ₀ .			Subtract:	~	
Restore:	00011		Set Q ₀ :	(1)1111	
- 11 m	00001	0 0 0 0	Restore:	00011	~
Shift:	00010	000-		00010	001(0)
Subtract:					Ý
Set Q ₀ :	11111		-	Remainder	Quotient
Restore:	00011			00010 = 2	0010 = 2
	00010	0 0 0 0		00010-2	0010-2
		0		10000	

Perform the restoring division algorithm for the number 11_{10} / 3_{10}

Ms.A.Aruna/AP/IT/SEM3/COA

Example : 7 10 / 3 10

Α	Q	M = 0011
0000	0111	Initial Value
0000 1 <u>101</u> 0000	1110	$ \begin{array}{c} \text{Shift} \\ \text{Subtract} \\ \hline \end{array} \begin{array}{c} \text{First} \\ \text{cycle} \end{array} $
0001 1110 0001	1100	$\begin{array}{c} \text{Shift} \\ \text{Subtract} \\ \rightarrow \text{Restore} \end{array} \begin{array}{c} \text{Second} \\ \text{cycle} \end{array}$
0011 0000 0000	1000 1001	Shift Subtract \rightarrow Set $Q_0 = 1$ Third cycle
0001 1110 Remainder 0001	0010 Quotient	$ \begin{array}{c} \text{Shift} \\ \text{Subtract} \\ \rightarrow \text{Restore} \end{array} \end{array} \begin{array}{c} \text{Fourtl} \\ \text{cycle} \end{array} $

Ms.A.Aruna/AP/IT/SEM3/COA

- The performance of restoring division algorithm can be improved by exploiting the following observation.
 - •In restoring division, what we do actually is:
 - –If A is positive, we shift it left and subtract M. That is, we
 - compute 2A M.

INSTITUTION

- –If A is negative, we restore is by doing A+M, shift it left, and then subtract M.
 - That is, we compute 2(A + M) M = 2A + M.
- We can accordingly modify the basic division algorithm by

eliminating the restoring step 2 NON-RESTORING DIVISION.

Basic steps in non-restoring division:

a)Start by initializing register A to 0, and repeat steps (b)-(d) *n* times.

b)If the value in register A is positive,

- Shift A and Q left by one bit position.
- Subtract M from A.
- c) If the value in register A is negative,
- Shift A and Q left by one bit position.
- Add M to A.

c)If A is positive, set $Q_0 = 1$; else, set $Q_0 = 0$.

d)If A is negative, add M to A as a final corrective step.

Ms.A.Aruna/AP/IT/SEM3/COA

A Simple Example: 8/3 for n=4

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman , Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU

02-11-2023

Ms.A.Aruna/AP/IT/SEM3/COA