UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - Signed operand multiplication- fast multiplication – Integer division – Floating point numbers and operations

Recap the previous Class

Ms.A.Aruna / AP / IT / SEM 3 / COA

Design of Fast Multiplier

a)Bit-Pair Recoding of Booth's Multiplication

–A technique that <u>halves the maximum number of summands</u>; derived directly from the Booth's algorithm.

–If we **group the Booth-coded multiplier digits in pairs**, we observe:

(+1, -1): (+1, -1) * M = 2 * M - M = M(0, +1): (0, +1) * M = M

–We need a single addition instead of a pair of addition & subtraction.

•Other similar rules can be framed.

Ms.A.Aruna / AP / IT / SEM 3 / COA

INSTITUTION

Yi+1	Yi	Yi-1	Partial Products
0	0	0	0*Multiplicand
0	0	1	1*Multiplicand
0	1	0	1*Multiplicand
0	1	1	2*Multiplicand
1	0	0	-2*Multiplicand
1	0	1	-1*Multiplicand
1	1	0	-1*Multiplicand
1	1	1	-0*Multiplicand

Ms.A.Aruna / AP / IT/ SEM 3 / COA

Design of Fast Multiplier

Original Booth- coded Pair	Equivalent Recoded Pair
(+1, 0)	(0, +2)
(-1, +1)	(0, -1)
(0, 0)	(0, 0)
(0, 1)	(0, 1)
(+1, 1)	
(+1, -1)	(0, +1)
(-1, 0)	(0, -2)

- Every equivalent recoded pair has at least one 0.
- Worst-case number of additions or subtractions is 50% of the number of multiplier bits.
- Reduces the worst-case time required for multiplication.

INSTITUTIONS	Example :	(+1:	3) 2	X (-	-22)	in	6-bits.
Original:	Multiplier	1	0	1	0	1	0
Booth:	Multiplier	-1	+1	-1	+1	-1	0
Recoded:	Multiplier	0	-1	0	-1	0	-2

	0 0 1	1 0 1
11111	L 1 1 0	
		0110
111	1 1 1 0 0) 1 1
111	1 0 0 1 1	-
110	1 1 1 1 0	0010

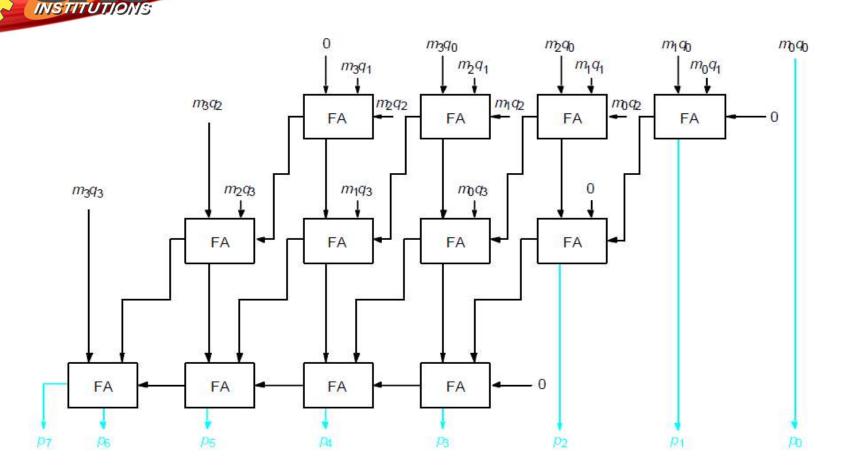
M = 001101(+13)-1 * M = 110011-2 * M = 100110

Ms.A.Aruna / AP / IT / SEM 3 / COA

b) Carry Save Multiplier

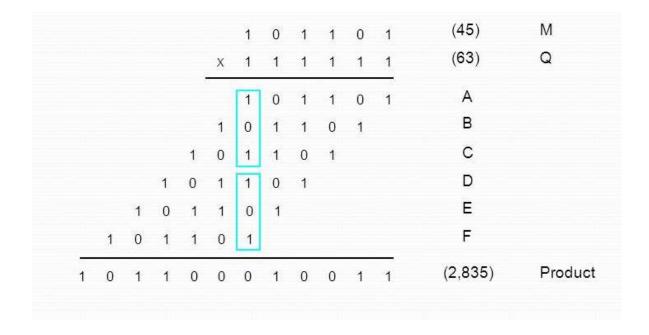
- We have seen earlier how carry save adders (CSA) can be used to add several numbers with carry propagation only in the last stage.
- The **partial products** can be generated in **parallel using n² AND gates**.
- The n partial products can then be added using a **CSA tree**.
- Instead of letting the carries ripple through during addition, we *save* them and feed it to the next row, at the correct weight positions.

4 x 4 Carry Save Multiplier

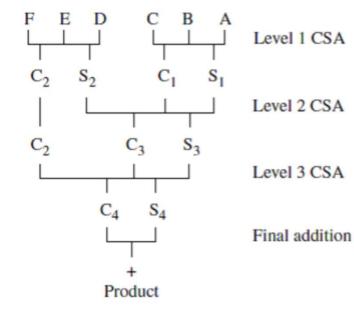


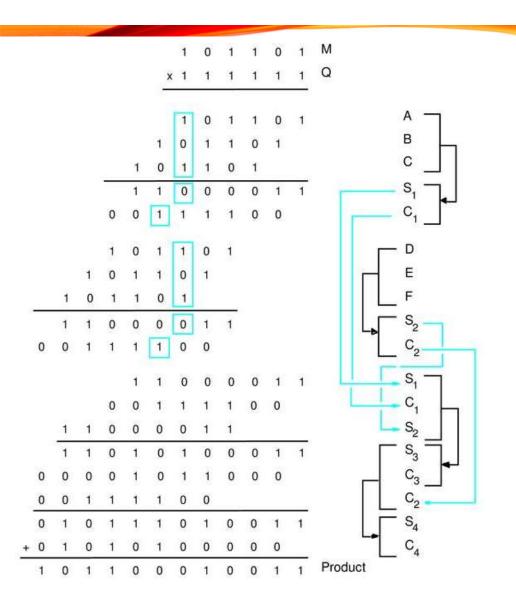
Ms.A.Aruna / AP / IT / SEM 3 / COA

• Consider the number 45 x 63. Perform Carry save addition



Ms.A.Aruna / AP / IT / SEM 3 / COA





Ms.A.Aruna / AP / IT / SEM 3 / COA

)2-11-2023

Wallace Tree Multiplier

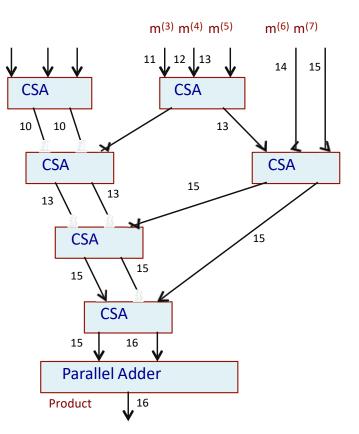
-A Wallace tree is a circuit that reduces the problem of summing n n-bit numbers to the problem of summing two $\Theta(n)$ -bit numbers.

INSTIT

- -It uses n/3 (floor of) carry-save adders in parallel to convert the sum of n numbers to the sum of 2n/3 (ceiling of) numbers.
- -It then recursively constructs a Wallace tree on the 2n/3 (ceiling of) resulting numbers.
- -The set of numbers is progressively reduced until there are only two numbers left.

-By performing many carry-save additions in parallel, Wallace trees allow two n-Ms.A.Arunabit/numbers to be multiplied in $\Theta(\log_2 n)$ time using a circuit of size $\Theta(n_2^2)_{1-2023}$

- \bullet The figure shows a Wallace tree that adds 8 partial products $m^{(0)},\ m^{(1)},\ ...,\ m^{(7)}.$
- The partial product $m^{(i)}$ consists of (n+i) bits.
- •Each line represents an entire number the label of an edge indicates the number of bits.
- •The carry-lookahead adder at the bottom adds a (2n-1)-bit number to a 2n-bit number to give the 2n-bit product.



Ms.A.Aruna / AP / IT / SEM 3 / COA

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman ,Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU

Ms.A.Aruna / AP / IT/ SEM 3 / COA