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What is Image Restoration?  

• Image Restoration refers to a class of methods that aim at reducing or 

removing various types of distortions of the image of interest. These can 

be: 

 

 Distortion due to sensor noise. 

 Out-of-focus camera. 

 Motion blur. 

 Weather conditions. 

 Scratches, holes, cracks caused by aging of the image. 

 Others. 

 



• Deterministic or stochastic methods. 

 In deterministic methods, we work directly with the image values in 

either space or frequency domain. 

 In stochastic methods, we work with the statistical properties of  the 

image of interest (autocorrelation function, covariance function, 

variance, mean etc.) 

 

• Non-blind or semi-blind or blind methods 

 In non-blind methods the degradation process is known. 

 In semi-blind methods the degradation process is partly-known. 

 In blind methods the degradation process is unknown. 

 

Classification of restoration methods 



• Direct methods 

The signals we are looking for (original “undistorted” image and 

degradation model) are finally obtained through a signle closed-form 

expression. 

 

• Iterative methods 

The signals we are looking for are obtained through a mathematical 

procedure that generates a sequence of improving approximate 

solutions to the problem. 

 

 

Classification of implementation types of restoration methods 



• A generic common model for an image restoration system is given by 

the following mathematical equation: 

𝑔 𝑥, 𝑦 = 𝐻 𝑓(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) 

where 

 (𝑥, 𝑦) are the space coordinates 

 𝑓 𝑥, 𝑦  is the original (undistorted) image 

 𝐻 ∙  is a generic representation of the degradation function which is 

imposed onto the original image. 

 𝑛 𝑥, 𝑦  is a noise signal added to the distorted image. 

 

 

 

A generic model of an image restoration system 



• In the degradation model: 

𝑔 𝑥, 𝑦 = 𝐻 𝑓(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) 

we are interested in the definitions of linearity and space-invariance. 

 

• The degradation model is linear if  

𝐻 𝑘1𝑓1 𝑥, 𝑦 + 𝑘2𝑓2 𝑥, 𝑦 = 𝑘1𝐻 𝑓1 𝑥, 𝑦 ] + 𝑘2𝐻[𝑓2 𝑥, 𝑦  

 

• The degradation model is space or position invariant if 

𝐻 𝑓 𝑥 − 𝑥0, 𝑦 − 𝑦0 = 𝑔 𝑥 − 𝑥0, 𝑦 − 𝑦0  

 

• In the above definitions we ignore the presence of external noise. 

 

• In real life scenarios, various types of degradations can be 

approximated by linear, space-invariant operators. 

 

 

Linear and space invariant (LSI) degradation model  



• Advantage 

It is much easier to deal with linear and space-invariant models. 

 Mathematics are easier. 

 The distorted image is the convolution of the original image and the 

distortion model. 

 Software tools are available. 

 

• Disadvantage 

For various realistic types of image degradations assumptions for 

linearity and space-invariance are too strict and significantly deviate 

from the true degradation model. 

 

 

Advantage and drawback of LSI assumptions 



Motion blur: A typical type of degradation 



• 1-D uniform motion blur 

ℎ 𝑥 =  

1

(2𝐿 + 1)
−𝐿 ≤ 𝑥 ≤ 𝐿

0 otherwise

 

 

• 2-D uniform motion blur 

ℎ 𝑥, 𝑦 =  

1

(2𝐿 + 1)2
−𝐿 ≤ 𝑥, 𝑦 ≤ 𝐿

0 otherwise

 

 

 

 

Types of motion blur 



Atmospheric turbulence: A typical type of degradation 



• Atmospheric turbulence ℎ 𝑥, 𝑦 = 𝐾𝑒𝑥𝑝 −
𝑥2+𝑦2

2𝜎2
 

0025.0 k

 001.0k 00025.0 k

negligible 

distortion 


Typical model for atmospheric turbulence 



• Uniform out-of-focus blur: ℎ 𝑥, 𝑦 =  
1

𝜋𝑅2
𝑥2 + 𝑦2 ≤ 𝑅

0 otherwise
 

• Note that the model is defined within a circular disc. 

Uniform out-of-focus blur: A typical type of degradation 



• In image restoration we often work with Discrete Fourier Transforms. 

• DFT assumes periodicity of the signal in time or space. 

• Therefore, periodic extension of signals is required. 

• Distorted image is the convolution of the original image and the 

distortion model. We are able to assume this because of the linearity 

and space invariance assumptions! 

• Convolution increases the size of signals. 

• Periodic extension must take into consideration the presence of 

convolution: zero-padding is required! 

• Every signal involved in an image restoration system must be extended 

by zero-padding and also treated as virtually periodic. 

 

Periodic extension of images and degradation model 



Wrong periodic extension of signals. 
Red and green signal are convolved  



Correct periodic extension of signals 
Red and green signal are convolved  

 

 

 



Correct periodic extension of images and degradation model 

• The original image 𝑓 𝑥, 𝑦  is of size 𝐴 × 𝐵. 

• The degradation model ℎ 𝑥, 𝑦  is of size 𝐶 × 𝐷. 

• We form the extended versions of 𝑓(𝑥, 𝑦) and ℎ(𝑥, 𝑦) by zero padding, 

both of size 𝑀 ×𝑁 with 

𝑀 ≥ 𝐴 + 𝐶 − 1 

𝑁 ≥ 𝐵 + 𝐷 − 1 

both periodic with period 𝑀 ×𝑁. 

 

• Example 

 Image 256x256 

 Degradation 3x3 

 With extension by zero padding both images have dimension at 

least (256+3-1)x(256+3-1)=258x258. 

 They are also assume to be periodic. 

 



Correct periodic extension of images and degradation model 



Inverse filtering for image restoration 

• Inverse filtering is a deterministic and direct method for image restoration. 

 

• The images involved must be lexicographically ordered. That means that 

an image is converted to a column vector by pasting the rows one by one 

after converting them to columns.  

 

• An image of size 256 × 256 is converted to a column vector of size 

65536 × 1. 

 

• The degradation model is written in a matrix form, where the images are 

vectors and the degradation process is a huge but sparse matrix. 

𝐠 = 𝐇𝐟 

 

• The above relationship is ideal. What really happens is 𝐠 = 𝐇𝐟 + 𝐧! 

 

 



Inverse filtering for image restoration 

• In this problem we know 𝐇 and 𝐠 and we are looking for a descent 𝐟. 

 

• The problem is formulated as follows: 

We are looking to minimize the Euclidian norm of the error, i.e., 

𝐧 2 = 𝐠 − 𝐇𝐟 2 

 

• The first derivative of the minimization function must be set to zero. 

𝐠 − 𝐇𝐟 2 = 𝐠 − 𝐇𝐟 𝑇 𝐠 − 𝐇𝐟 = 𝐠𝑻 −𝐟𝑻 𝐇𝑻 𝐠 − 𝐇𝐟 = 

𝐠𝑻𝐠 − 𝐠𝑻 𝐇𝐟 − 𝐟𝑻𝐇𝑻 𝐠 + 𝐟𝑻𝐇𝑻 𝐇𝐟 

𝜕 𝐠−𝐇𝐟 2

𝜕𝐟
= −2𝐇𝑻 𝐠 + 𝟐𝐇𝑻 𝐇𝐟 = 𝟎 ⇒ 𝐇𝑻 𝐇𝐟 = 𝐇𝑻 𝐠 

𝐇𝑻 𝐇𝐟 = 𝐇𝑻 𝐠 

𝐟 = 𝐇𝑻 𝐇
−𝟏
𝐇𝑻 𝐠 

• If 𝐇 is a square matrix and its inverse exists then 𝐟 = 𝐇−𝟏𝐠  

 

 

 

 

 



Inverse filtering for image restoration in frequency domain 

• We have that 

𝐇𝑻 𝐇𝐟 = 𝐇𝑻 𝐠 

 

• If we take the DFT of the above relationship in both sides we have: 

𝐻 𝑢, 𝑣 2𝐹 𝑢, 𝑣 = 𝐻 𝑢, 𝑣 ∗𝐺(𝑢, 𝑣) 

𝐹 𝑢, 𝑣 =
𝐻 𝑢, 𝑣 ∗

𝐻 𝑢, 𝑣 2
𝐺(𝑢, 𝑣) 

𝐹 𝑢, 𝑣 =
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

 

• Note that the most popular types of degradations are low pass filters (out-

of-focus blur, motion blur). 

 

 

 

 

 



Inverse filtering for noise-free scenarios 

• We have that 

𝐹 𝑢, 𝑣 =
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

 

• Problem: It is very likely that 𝐻(𝑢, 𝑣) is 0 or very small at certain 

frequency pairs. 

 

• For example, 𝐻(𝑢, 𝑣) could be a 𝑠𝑖𝑛𝑐 function.  

 

 

• In general, since 𝐻(𝑢, 𝑣) is a low pass filter, it is very likely that its values 

drop off rapidly as the distance of (𝑢, 𝑣) from the origin (0,0) increases. 

 

 

 

 

 

 

 



Frequency responses of various image degradation functions 



Inverse filtering for noisy scenarios 

• We have that 

𝐹 𝑢, 𝑣 =
𝐺 𝑢, 𝑣 − 𝑁(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
=
𝐺 𝑢, 𝑣

𝐻(𝑢, 𝑣)
−
𝑁(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

 

• Problem: It is definite that while 𝐻(𝑢, 𝑣) is 0 or very small at certain 

frequency pairs, 𝑁(𝑢, 𝑣) is large. 

 

• Note that 𝐻(𝑢, 𝑣) is a low pass filter, whereas 𝑁(𝑢, 𝑣) is an all pass 

function. Therefore, the term 
𝑁(𝑢,𝑣)

𝐻(𝑢,𝑣)
 can be huge! 

 

• Inverse filtering fails in that case  

 

 

 

 

 

 

 



Pseudo-inverse filtering 

• Instead of the conventional inverse filter, we implement one of the 

following: 

𝐹 𝑢, 𝑣 =  

𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
𝐻(𝑢, 𝑣) ≠ 0

0 otherwise

 

 

𝐹 𝑢, 𝑣 =  

𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
𝐻(𝑢, 𝑣) ≥ 𝜖

0 otherwise

 

 

• The parameter 𝜖 (called threshold in the figures in the next slides) is a 

small number chosen by the user. 

 

• This filter is called pseudo-inverse or generalized inverse filter. 

 

 

 

 

 

 

 



Pseudo-inverse filtering with different thresholds 



Pseudo-inverse filtering in the case of noise 






