Reg.No:				

SNS College of Technology, Coimbatore-35. (An Autonomous Institution) Internal Assessment -I Academic Year 2023-2024 (Odd) Third Semester 19MAT201– TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (REGULATION 2019)

Time: 1.30 Hours

Maximum Marks: 50

		PART – A (5 x 2 = 10 MARKS) ANSWER ALL QUESTIONS	СО	Blooms
1.		Write the Dirichlet's conditions for the existence of a Fourier series.	CO1	(Rem)
2.		Obtain the Fourier sine series for $f(x) = 1$ in $(0, \pi)$.	CO1	(Und)
3.		Define the RMS value of a function $f(x)$ over the interval (a, b).	CO1	(Und)
4.		Write the Fourier transform pair.	CO2	(Rem)
5.		Prove that $F[f(ax)] = \frac{1}{a} F\left(\frac{s}{a}\right), a > 0$	CO2	(Und)
		PART –B (13+13+14 = 40 MARKS) ANSWER ALL QUESTIONS		
6.	a) i)	Expand the Fourier series for the function $f(x) = x(2l - x)$ in $0 \le x \le 2l$	CO1	(App) (7)
	ii)	Obtain the half range Fourier Sine series for $f(x) = \frac{\pi - x}{2}$ in $0 \le x \le \pi$	CO1	(App) (6)
		(OR)		
	b)	Construct the Fourier series for $f(x) = x^2$ in $-\pi \le x \le \pi$ and hence deduce that	CO1	(App) (13)
		(i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \infty = \frac{\pi^2}{6}$		
		(ii) $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \infty = \frac{\pi^4}{90}$		

7.	a)	Develop the Fourier transform of $f(x) = \begin{cases} a - x & x < a \\ 0 & x > a > 0 \end{cases}$ and								CO2	(App) (13)
		hence deduce that (i) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}$ (ii) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}$.									
					(0	R)					
	1 \ '\									<u> </u>	
	D) 1)	Expand the Fourier series for the function $f(x) = 2x - x^2$ in $0 \le x \le 2$								COI	(App) (7)
	ii)	Obtain the half range Fourier cosine series for $f(x) = l - x$ in $0 \le x \le l$								^l CO1	(App) (6)
8.	a)	Determine the Fourier transform of $f(x) = \begin{cases} 1 & x < a \\ 0 & x > a > 0 \end{cases}$ and								CO2	(App) (14)
		hence deduce that (i) $\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$ (ii) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}$.									
		(OR)									
	1)	The following table gives the variations of periodic current over a							CO1	(Ana)	
	D)	period:									(14)
		t sec	0	T/6	T/3	T/2	2T/3	5T/6	Т		
		A amp	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98		
		Show that there is a direct current part of 0.75 amplitude in the variation current and express the Fourier series upto second harmonic.									

Rem/Und: Remember/ Understand

App: Apply

Ana: Analyze Eva: Evaluate

Cre: Create