

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECB202 – LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

UNIT 5 – SEQUENTIAL CIRCUITS

TOPIC 3 – D,T FLIP FLOPS, Master Slave

D Flip-Flop

D flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, D latch operates with enable signal.

That means, the output of D flip-flop is insensitive to the changes in the input, D except for active transition of the clock signal.

D

 \boldsymbol{C}

D Flip-Flop- Truth Table

02/11/2023

D Flip-Flop- Working

- When storing data, a memory element's excitation input is simply the data to be stored.
- A device (which is called a delay latch or D latch) is needed that transfers a logic value on its excitation input D into the cross-coupled storage cell of a latch.
- The D latch can be created from a gated SR latch, by assigning S = D and R =D.

D Flip-Flop- Working

<u>Characteristic equation:</u>

- This equation can be derived from that of the gated SR latch by substituting D for S and D for R: $O^* = DC + CQ$
- When the enable signal is low, (C = 0), the equation reduces to $Q^* = Q$, the latch is placed in hold mode (no change) operating mode with the latch holding the last value of D that was entered
- When the enable signal is high (C = 1), $Q^* = D$, the excitation input D is gated directly to output Q (gated or enabled) mode).

02/11/2023

D Flip-Flop- Timing Diagram

02/11/2023

T Flip-Flop

- •T flip-flop is the simplified version of JK flip-flop.
- •It is obtained by connecting the same input 'T' to both inputs of JK flip-flop.
- •It operates with only positive clock transitions or negative clock transitions.
- The name T flip-flop is termed from the nature of toggling operation
- > The major applications of T flip-flop are counters and control circuits
- T flip flop is modified form of JK flip-flop making it to operate in toggling region
- >Whenever the clock signal is LOW, the input is never going to affect the output state

T Flip-Flop

02/11/2023

T Flip-Flop- Truth Table

	Prev	1	
Т	Q _{Prev}	Q' _{Prev}	Q _{Next}
0	0	1	0
0	1	0	1
1	0	1	1
1	1	0	0

T Flip-Flop- Truth Table

- When the T input is low, then the next sate of the T flip flop is same as the present state.
- •T = 0 and present state = 0 then the next state = 0
- $\bullet T = 0$ and present state = 1 then the next state = 1

>When the T input is high and during the positive transition of the clock signal, the next state of the T flip –flop is the inverse of present state.

- •T = 1 and present state = 0 then the next state = 1
- •T = 1 and present state = 1 then the next state = 0

Applications

- ≻Frequency Division Circuits.
- \geq 2 –Bit Parallel Load Registers.

02/11/2023

T Flip-Flop- Characteristic Table & Equation

02/11/2023

Master-Slave FF configuration using SR latches

02/11/2023

Flip Flops/19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

12/17

Master-Slave FF configuration using SR latches

<u>S R CLK</u> 0 0 1 0 1 1	$\begin{array}{c c} Q & Q' \\ \hline Q_0 & Q_0' & \text{Store} \\ 0 & 1 & \text{Reset} \end{array}$	•When C=1, mas slave stores <i>old</i> of
1 0 1 1 1 1 X X 0	1 0 Set 1 1 Disallowed $O_0 O_0$ ' Store	•When C=0, mas master not sensiti

02/11/2023

Flip Flops/19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

ster is enabled and stores *new* data, data.

ster's state passes to enabled slave, tive to new data (disabled).

MASTER SLAVE J K Flip flop

- Clocked J-K FF (falling edge)
 - Realization using two S-R latches
 - Note where J and K change.
 - One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse
 - while the other acts as the "Slave" circuit, which triggers on the falling edge of the clock pulse.
 - This results in the two sections, the master section and the slave section being enabled during opposite half-cycles of the clock signal.
 - The slave section being enabled during opposite half-cycles of the clock signal.

02/11/2023

MASTER SLAVE J K Flip flop

(a) Master-slave J-K flip-flop

(b) Internal timing diagram for master-slave J-K flip-flop

02/11/2023

Excitation Tables

	SR Flij	o-flop]	D Flip-flop)
Q(t)	Q(t+1)	S	R	 Q(t)	Q(t+1)	DR
0	0	0	Х	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	1	х	0	1	1	1
JK flip-flop				T flip-flop)	
Q(t)	Q(t+1)	J	K	 Q(t)	Q(t+1)	DR
0	0	0	x	0	0	0
0	1	1	х	0	1	1
1	0	х	1	1	0	1
1	1	x	0	 1	1	0

THANK YOU

02/11/2023

