SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A ++ ' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECB202 - LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER
UNIT 5 - SEQUENTIAL CIRCUITS
TOPIC 3 - D,T FLIP FLOPS, Master Slave

D flip-flop operates with only positive clock transitions or negative clock transitions.
Whereas, D latch operates with enable signal.
That means, the output of D flip-flop is insensitive to the changes in the input, D except for active transition of the clock signal.

D Flip-Flop- Truth Table

(b)

C	D	Next state of Q
0	X	No change
1	0	$\mathrm{Q}=0$; Reset state
1	1	$\mathrm{Q}=1$; Set state

D Flip-Flop- Working

- When storing data, a memory element's excitation input is simply the data to be stored.
- A device (which is called a delay latch or D latch) is needed that transfers a logic value on its excitation input D into the cross-coupled storage cell of a latch.
- The D latch can be created from a gated SR latch, by assigning $\mathrm{S}=\mathrm{D}$ and $\mathrm{R}=$ D.

D Flip-Flop- Working

Characteristic equation:

- This equation can be derived from that of the gated SR latch by substituting D for S and D for R :

$$
\mathrm{Q}^{*}=\mathrm{DC}+\mathrm{CQ}
$$

- When the enable signal is low, $(\mathrm{C}=0)$, the equation reduces to $\mathrm{Q}^{*}=\mathrm{Q}$, the latch is placed in hold mode (no change) operating mode with the latch holding the last value of D that was entered
- When the enable signal is high $(\mathrm{C}=1)$, $\mathrm{Q}^{*}=\mathrm{D}$, the excitation input D is gated directly to output Q (gated or enabled mode).

D Flip-Flop- Timing Diagram

T Flip-Flop

-T flip-flop is the simplified version of JK flip-flop.
-It is obtained by connecting the same input ' T ' to both inputs of JK flip-flop.
-It operates with only positive clock transitions or negative clock transitions.
$>$ The name T flip-flop is termed from the nature of toggling operation
$>$ The major applications of T flip-flop are counters and control circuits
$>$ T flip flop is modified form of JK flip-flop making it to operate in toggling region
$>$ Whenever the clock signal is LOW, the input is never going to affect the output state

T Flip-Flop- Truth Table

	Previous		Next	
T	$Q_{\text {Prev }}$	$Q_{\text {Prev }}^{\prime}$	$Q_{\text {Neest }}$	$Q_{\text {Nest }}^{\prime}$
0	0	1	0	1
0	1	0	1	0
1	0	1	1	0
1	1	0	0	1

T Flip-Flop- Truth Table

$>$ When the T input is low, then the next sate of the T flip flop is same as the present state.
$\cdot \mathrm{T}=0$ and present state $=0$ then the next state $=0$
$-\mathrm{T}=0$ and present state $=1$ then the next state $=1$
$>$ When the T input is high and during the positive transition of the clock signal, the next state of the T
flip -flop is the inverse of present state.
$\cdot \mathrm{T}=1$ and present state $=0$ then the next state $=1$
$\cdot \mathrm{T}=1$ and present state $=1$ then the next state $=0$
Applications
$>$ Frequency Division Circuits.
>2-Bit Parallel Load Registers.

T Flip-Flop- Characteristic Table \& Equation

Master-Slave FF configuration using SR latches

Master-Slave FF configuration using SR latches

-When $\mathrm{C}=1$, master is enabled and stores new data, slave stores old data.
-When $\mathrm{C}=0$, master's state passes to enabled slave, master not sensitive to new data (disabled).

MASTER SLAVE J K Flip flop

- Clocked J-K FF (falling edge)
- Realization using two S-R latches
- Note where J and K change.
- One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse
- while the other acts as the "Slave" circuit, which triggers on the falling edge of the clock pulse.
- This results in the two sections, the master section and the slave section being enabled during opposite half-cycles of the clock signal.
- The slave section being enabled during opposite half-cycles of the clock signal.

MASTER SLAVE J K Flip flop

(a) Master-slave \mathbf{J}-K flip-flop

(b) Internal timing diagram for master-slave \mathbf{J}-K flip-flop

Excitation Tables

SR Flip-flop				D Flip-flop		
Q(t)	$Q(t+1)$	S	R	$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	DR
0	0	0	X	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	1	X	0	1	1	1
	JK flip				flip-flop	
Q(t)	$\mathrm{Q}(\mathrm{t}+1)$	J	K	$\mathrm{Q}(\mathrm{t})$	Q(t+1)	DR
0	0	0	x	0	0	0
0	1	1	x	0	1	1
1	0	x	1	1	0	1
1	1	x	0	1	1	0

THANK YOU

