

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

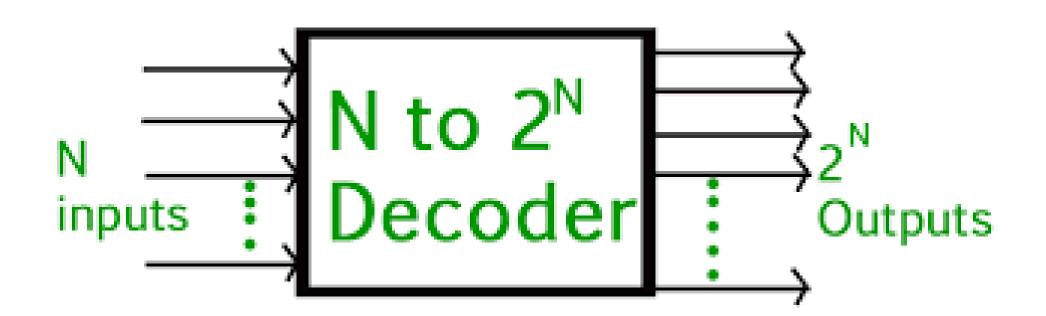
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB202 – LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

UNIT 4 – COMBINATIONAL and SEQUENTIAL CIRCUITS

TOPIC 2 – DECODER AND ENCODER



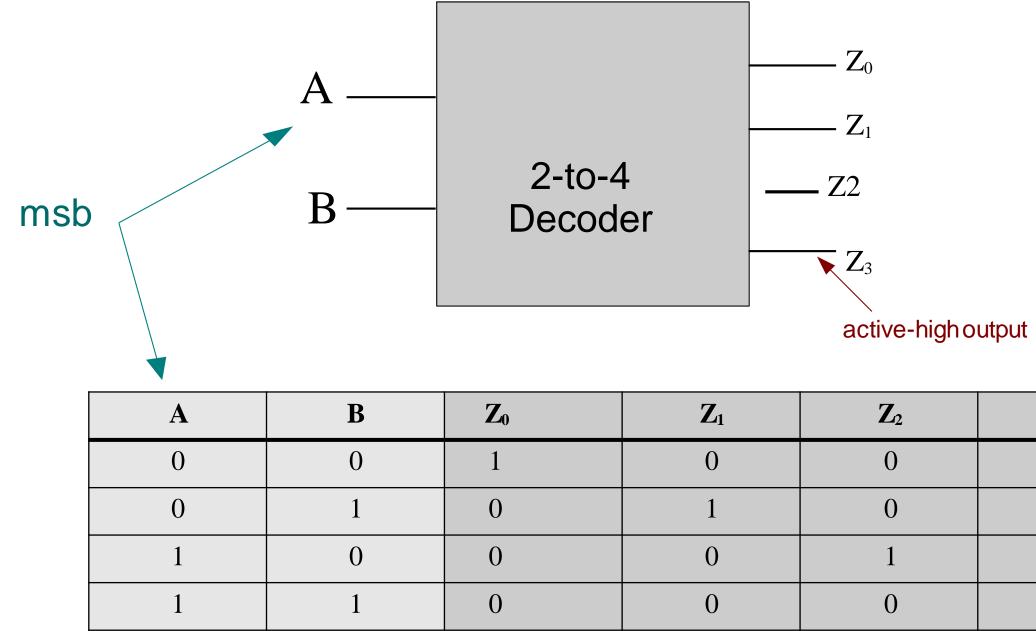
WHAT IS A DECODER?

> Decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2ⁿ unique outputs.

DECODER AND ENCODER / 19ECB202 / LINEAR AND DIGITAL CIRCUITS / Mrs.R.Prabha / AP / ECE / SNSCT

A decoder has

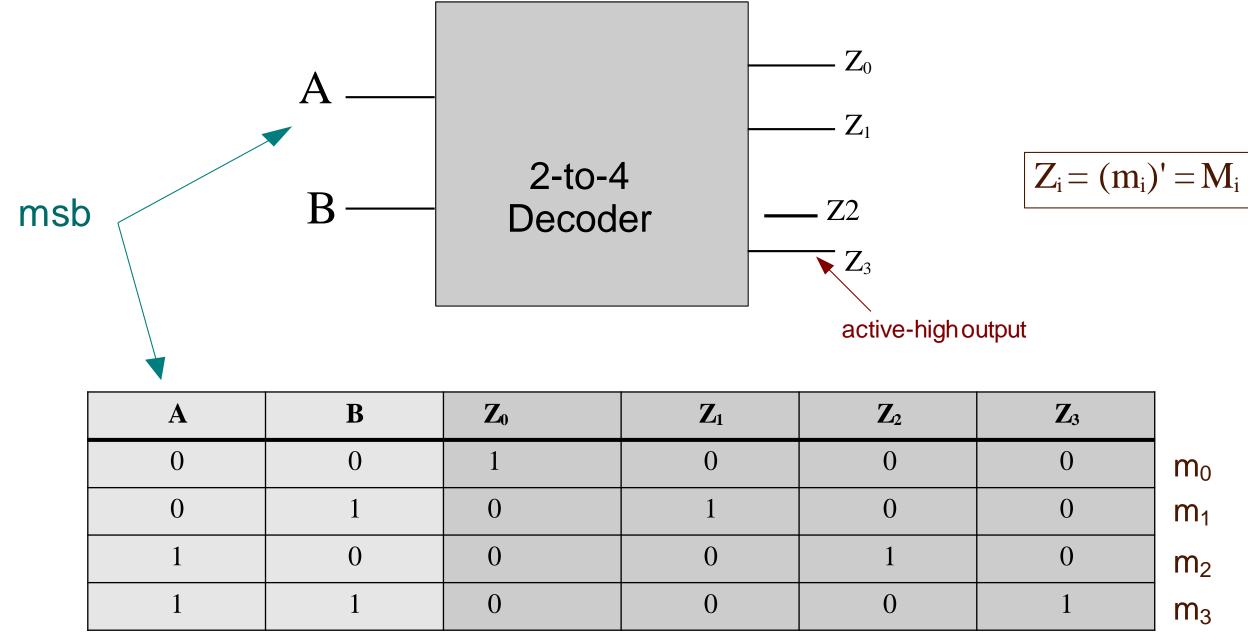
- *n* inputs
- 2ⁿ outputs
 - A decoder selects one of 2ⁿ outputs by decoding the binary value on the *n* inputs.
 - The decoder generates all of the minterms of the *n* input variables.


Exactly one output will be active for each combination of the inputs.

What does "active" mean?

DECODER

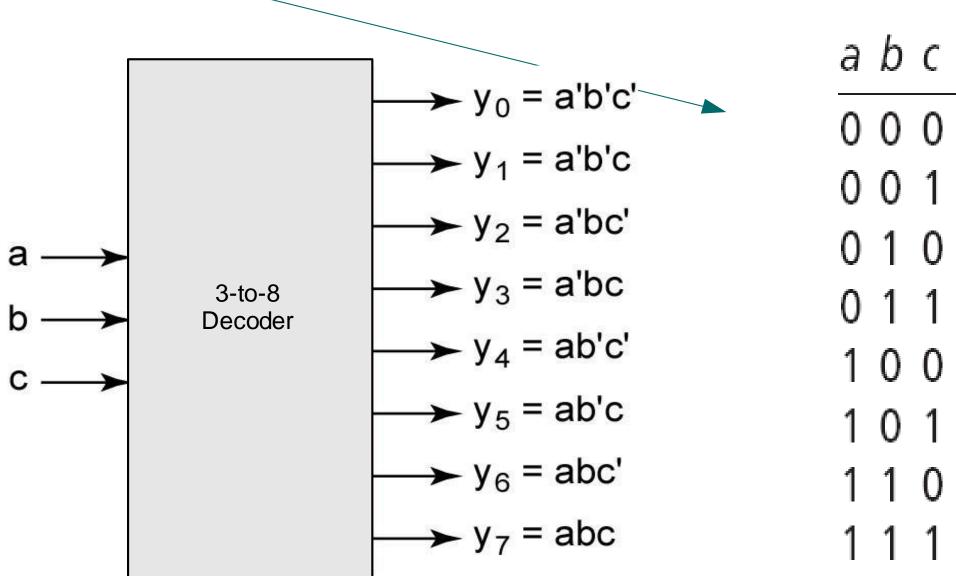
DECODER AND ENCODER /19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT


$$Z_1$$

$$Z_i = m_i$$

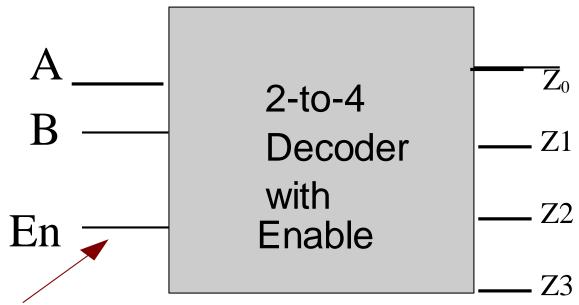
\mathbb{Z}_2	Z ₃	
0	0	m_0
0	0	m_1
1	0	m ₂
0	1	m ₃

DECODER


DECODER AND ENCODER /19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

\mathbb{Z}_2	Z ₃	
0	0	m
0	0	m
1	0	m
0	1	m

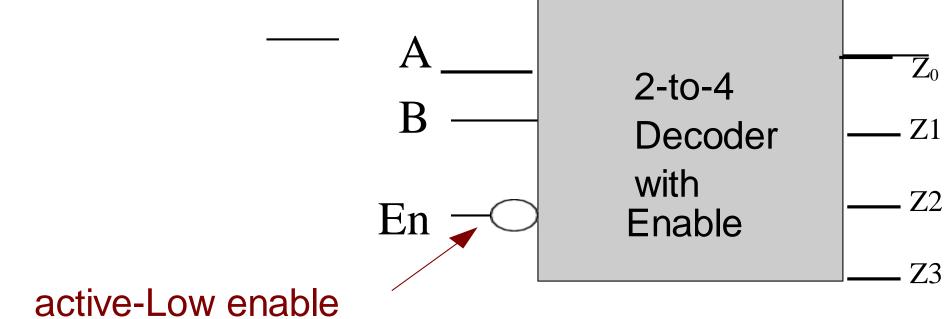
DECODERS



Y₀ Y₁ Y₂ Y₃ Y₄ Y₅ Y₆ Y₇ - 0 0 0 0 0 -0 - 1

Decoder with Enable

active-high enable


		En	Α	В	Z ₀	Z_1	Z_2	Z_3
		1 R AND ENCODER /19ECB201	2/ 0	0	1	0	0	0
anablad	CIRCUITS	LINEAR AND DIGITAL /Mrs.R.Prabha/AP/ECE/SNS	ст О	1	0	1	0	0
enabled		1	1	0	0	0	1	0
		1	1	1	0	0	0	1
die ele le d		0	Х	X	0	0	0	0

disabled

Decoder with Enable

	En	Α	В	Z ₀	Z_1	Z_2
	R AND ENCODER /19E0 LINEAR AND DIGITAL /Mrs.R.Prabha/AP/ECE	0	0	₈ 1	0	0
enabled	0	0	1	0	1	0
	0	1	0	0	0	1
	0	1	1	0	0	0
disabled	1	Х	Х	0	0	0

- \mathbb{Z}_3 0 0 0 1 0

ACTIVITY

How Many Words in a Minute

Level: Any Time: 15 minutes Materials: Vocab groups to revise A watch to time a minute

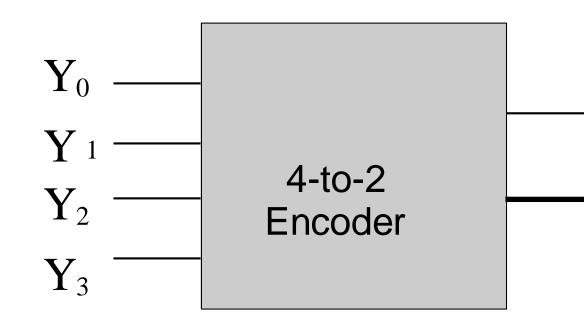
DECODER AND ENCODER /19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

WHY ENCODERS?

An encoder has

- 2ⁿ inputs
- *n* outputs

Outputs the binary value of the selected (or active) input. Performs the inverse operation of a decoder. Issues


- What if more than one input is active? -
- What if no inputs are active?

Encoder Outputs

Encoders

	Y ₀	\mathbf{Y}_1	\mathbf{Y}_2	Y ₃	Α	В
LI	AND ENCODER /19ECB202/ NEAR AND DIGITAL	0	0 11	0	0	0
CIRCUITS/I	/ ns.R.Prabha/AP/ECE/SNSC 0	1	0	0	0	1
	0	0	1	0	1	0
	0	0	0	1	1	1

EE203 - Linear and Digital Circuits

Dr.B.Sivasankari, ASP/ECE

AB

- If more than one input is active, the higher-order input has priority over the lower-order input.
 - The higher value is encoded on the output
 - A valid indicator, d, is included to indicate whether or not the output is valid.
 - CIRCUITS/MIS.R. PID HAVAP/LEE/SWSCT INVALID When no inputs are active
 - d = 0Output is Valid when at least one input is active

Why is the valid indicator needed?

Priority Encoders

			у У	$0 \longrightarrow 1$ $1 \longrightarrow 2$ $3 \longrightarrow 3$	-	to-8		►а <mark>⊲</mark> ►b ►c		mst)
			у У	$4 \longrightarrow 5$ $6 \longrightarrow 7$ $7 \longrightarrow 7$] Pric	ority coder		≻ d ◀			Valid bit
Уo	У 1	y 2	Уз	y 4	y 5	y 6	y 7	a	b	С	d
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
er and e	NCODER /19E	CB202/ O	0	0	0	0	0	0	0	1	1
UNEAR	AND DIGITAL Prabha/AP/ECE	/SNSCT	0	0	C ³	0	0	O	1	0	1
5/Mrs.R.	V	X	1	0	0	0	0	O	1	1	1
T571₩rs.R. X	X								-	_	-
X X X	x	X	X	1	0	0	0	1	0	Ō	1
X	Χ	~	~	•	0 1	0 0	0 0	1	0 0	0	1 1
X X	X X	x	x	1 X X	, v	•	· ·	1 1 1	<u> </u>	0 1 0	1 1 1

EE20

Using an *n*-output Decoder

Use an *n*-output decoder to realize a logic circuit for a

- function with *n* minterms.
- Each minterm of the function can be mapped to an output of the decoder.
- For each row in the truth table, for the function, where the • output is 1, sum (or "OR") the corresponding outputs of the decoder 14 CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

That is, for each minterm in the minterm expansion of the function, OR the corresponding outputs of the decoder.

Leave remaining outputs of the decoder unconnected.

Using an *n*-output Decoder

Example

• Using a 3-to-8 decoder, design a logic circuit to realize the following Boolean function

DECODER AND ENCODER /19ECB202/ LINE AR AN FIGURAL BC) = $\Sigma m(2, 3, 5, 6, 17)$ CIRCUITS/Mrs.R.Prabh (AP) 2CE/SNSCT) = $\Sigma m(2, 3, 5, 6, 17)$

02/11/2023

Using an *n*-output Decoder

Example

• Using a 2-to-2 decoder, design a logic circuit to realize the following Boolean function

DECODER AND ENCODER /19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

16

 $F(A,B,C) = \Sigma m(0, 1, 4, 6, 7)$

02/11/2023

ASESSMENT

17

- What is a Encoder? 1.
- 2. Device which converts an input device state into a binary representation of ones or zeros is termed as
 - 1. Encoder
 - 2. Decoder
 - 3. Multiplexer DECODER AND ENCODER /19ECB202/ LINEAR AND DIGITAL
- 3. A decoder converts n inputs to _____ outputs.(2ⁿ)
- ----- are building blocks of encoders.(Ans OR gate) 4.
- 5. Draw the block diagram of 2x4 decoder.

02/11/2023

THANK YOU

02/11/2023

DECODER AND ENCODER /19ECB202/ LINEAR AND DIGITAL CIRCUITS/Mrs.R.Prabha/AP/ECE/SNSCT

