

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE – 35 19MAT 201 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

UNIT – I

FOURIER SERIES

PART A

- 1. Write Dirichlet's conditions.
- 2. Find a_0 for $f(x) = \frac{\pi x}{2}$ in $(0, \pi)$.
- 3. Find the constant a_0 for the function $\mathbf{f}(\mathbf{x}) = \mathbf{x}$ in $\mathbf{0} \le \mathbf{x} \le 2\pi$
- 4. Find the value of \mathbf{a}_n in the Fourier expansion of $f(x) = x^2$ in $(0, 2\pi)$
- 5. Does $f(x) = \tan x$ possess a Fourier expansion in $(0, \pi)$.
- 6. Obtain the Fourier sine series for f(x) = 1 in $(0, \pi)$.
- 7. Define the RMS value of a function f(x) over the interval (a, b).
- 8. Find RMS value of $f(x) = x^2$ in $(0, \pi)$
- 9. State Parseval's identity for f(x) as Fourier series in (0,21).
- 10. Define Harmonic Analysis.

PART B

1. Construct the Fourier series for $f(x) = x^2$ in $-\pi \le x \le \pi$ and hence deduce that

- (i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ (ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$ (iii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$ (iv) $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$
- 2. The following table gives the variations of periodic current over a period:

t sec	0	T/6	T/3	T/2	2T/3	5T/6	Т
A amp	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98

Find the Fourier series upto second harmonic.

3. The following values of y give the displacement in inches of certain machine part for the rotation x of the fly wheel. Expand y in terms a Fourier Series upto third harmonic:

X	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

4. Find the Fourier series as far as the second harmonic to represent the function given in the following data.

X	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

5. Expand the Fourier series for the function f(x) = x(2l - x) in $0 \le x \le 2l$

6. Expand the Fourier series for the function $f(x) = (l - x)^2$ in (0, 2 l)

7. Expand the Fourier series for the function $f(x) = 2x - x^2$ in $0 \le x \le 2$

8. Expand the Fourier series for the function f(x) = x in $-\pi \le x \le \pi$

9. Obtain the half range Fourier sine series for $f(x) = \begin{cases} x & , 0 < x < 1 \\ 2 - x & , 1 < x < 2 \end{cases}$

10. Obtain the half range Fourier Sine series for $f(x) = x(\pi - x)$ in $0 \le x \le \pi$

11. Obtain the half range Fourier cosine series for f(x) = l - x in $0 \le x \le l$

12. Obtain the half range Fourier Sine series for $f(x) = \frac{\pi - x}{2}$ in $0 \le x \le \pi$