SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE - 35
19MAT 201 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT - I

FOURIER SERIES

PART A

1. Write Dirichlet's conditions.
2. Find a_{0} for $f(x)=\frac{\pi-x}{2}$ in $(0, \pi)$.
3. Find the constant a_{0} for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $0 \leq \mathrm{x} \leq 2 \pi$
4. Find the value of $\mathbf{a}_{\mathbf{n}}$ in the Fourier expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathbf{2}}$ in $(0,2 \pi)$
5. Does $f(x)=\tan x$ possess a Fourier expansion in $(0, \pi)$.
6. Obtain the Fourier sine series for $f(x)=1$ in $(0, \pi)$.
7. Define the RMS value of a function $f(x)$ over the interval (a, b).
8. Find RMS value of $f(x)=x^{2}$ in $(0, \pi)$
9. State Parseval`s identity for $\mathrm{f}(\mathrm{x})$ as Fourier series in $(0,21)$.
10. Define Harmonic Analysis.

PART B

1. Construct the Fourier series for $f(x)=x^{2}$ in $-\pi \leq x \leq \pi$ and hence deduce that
(i) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \infty=\frac{\pi^{2}}{6}$
(ii) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots \ldots . . \infty=\frac{\pi^{2}}{12}$
(iii) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \infty=\frac{\pi^{2}}{8}$
(iv) $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots . . \infty=\frac{\pi^{4}}{90}$
2. The following table gives the variations of periodic current over a period:

$\mathrm{t} \sec$	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A							
amp	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98

Find the Fourier series upto second harmonic.
3. The following values of y give the displacement in inches of certain machine part for the rotation x of the fly wheel. Expand y in terms a Fourier Series upto third harmonic:

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
$\mathrm{f}(\mathrm{x})$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

4. Find the Fourier series as far as the second harmonic to represent the function given in the following data.

x	0	1	2	3	4	5
$f(x)$	9	18	24	28	26	20

5. Expand the Fourier series for the function $f(x)=x(2 l-x)$ in $0 \leq x \leq 2 l$
6. Expand the Fourier series for the function $f(x)=(l-x)^{2}$ in $(0,2 l)$
7. Expand the Fourier series for the function $f(x)=2 x-x^{2}$ in $0 \leq x \leq 2$
8. Expand the Fourier series for the function $f(x)=x$ in $-\pi \leq x \leq \pi$
9. Obtain the half range Fourier sine series for $f(x)=\left\{\begin{array}{cl}x & , 0<x<1 \\ 2-x & , 1<x<2\end{array}\right.$
10. Obtain the half range Fourier Sine series for $f(x)=x(\pi-x)$ in $0 \leq x \leq \pi$
11. Obtain the half range Fourier cosine series for $f(x)=l-x$ in $0 \leq x \leq l$
12. Obtain the half range Fourier Sine series for $f(x)=\frac{\pi-x}{2}$ in $0 \leq x \leq \pi$
