Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A++' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

19ECB202 - LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

UNIT 3 - GATES AND MINIMIZATION TECHNIQUES
TOPIC 3 - Boolean Function

Boolean Functions

\Rightarrow A Boolean Function is described by an algebraic expression called Boolean expression which consists of binary variables, the constants 0 and 1, and the logic operation symbols.
$>$ Eg. $F=x y^{\prime} z+p$. We defined the Boolean function $F=x y^{\prime} z+p$ in terms of four binary variables x, y, z, and p.

Boolean Functions - Simplifications

Consensus laws

1.

$$
A B+\bar{A} C+B C=A B+\bar{A} C
$$

Proof

$$
\begin{aligned}
A B+\bar{A} C+B C & =A B+\bar{A} C+B C \cdot 1 \\
& =A B+\bar{A} C+B C(A+\bar{A}) \quad(\because A+\bar{A}=1) \\
& =A B+\bar{A} C+A B C+\bar{A} B C \\
& =A B(1+C)+\bar{A} C(1+B) \quad(\because 1+B=1=1+C) \\
& =A B+\bar{A} C
\end{aligned}
$$

Boolean Functions - Simplifications

2.

$$
(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)
$$

Proof

$$
\begin{aligned}
(A+B)(\bar{A}+C)(B+C)= & (A+B)(\bar{A}+C)(B+C+0) \\
= & (A+B)(\bar{A}+C)(B+C+A \bar{A}) \\
= & (A+B)(\bar{A}+C)(B+C+A)(B+C+\bar{A}) \\
& {[\because A+B C=(A+B)(A+C)] } \\
= & (A+B)(A+B+C)(\bar{A}+C)(\bar{A}+C+B) \\
= & (A+B)(\bar{A}+C) \\
& {[\because A(A+B)=A] }
\end{aligned}
$$

Simplify $\overline{Y=A} B C+A \bar{B} C+A B \bar{C}$ to $Y=A(B+C)$.
Solution:
3. Solution:

$$
\begin{aligned}
Y & =A B C+A \bar{B} C+A B \bar{C} \\
& =A C(B+\bar{B})+A B \bar{C} \\
& =A C \cdot 1+A B \bar{C} \\
& =A(C+B \bar{C}) \\
& =A(B+C)
\end{aligned}
$$

Basic Theorems and Properties of Boolean

Algebra

Simplify the given Boolean expression $Y=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B \bar{C}$.
4. Solution:

$$
\begin{aligned}
Y & =\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B \bar{C} \\
& =\bar{A} \bar{C}(B+\bar{B})+A \bar{C}(B+\bar{B}) \\
& =\bar{A} \bar{C}+A \bar{C} \\
& =\bar{C}(\bar{A}+A) \\
& =\bar{C} \cdot 1 \\
& =\bar{C}
\end{aligned}
$$

Simplify the expression $Y=\overline{(A B+\bar{C})(\overline{A+B}+C)}$.
5. Solution:

$$
\begin{aligned}
\boldsymbol{Y} & =\overline{(\boldsymbol{A B}+\bar{C})(\bar{A}+\boldsymbol{B}+\boldsymbol{C})} \\
& =\overline{(\boldsymbol{A B}+\overline{\boldsymbol{C}})(\overline{\boldsymbol{A}} \cdot \bar{B}+\boldsymbol{C})} \\
& =\overline{\boldsymbol{A B} \cdot \overline{\boldsymbol{A}} \overline{\boldsymbol{B}}+\boldsymbol{A B C}+\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}}+\boldsymbol{C} \overline{\boldsymbol{C}}} \\
& =\overline{\mathbf{O}+\boldsymbol{A} \boldsymbol{B} C+\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}}+\mathbf{0}} \\
& =\overline{\boldsymbol{A B C}+\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}}} \\
& =\overline{\boldsymbol{A} \boldsymbol{B} \boldsymbol{C}} \cdot \overline{\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}}} \\
& =(\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}}) \cdot(\overline{\bar{A}}+\overline{\bar{B}}+\overline{\bar{C}}) \\
& =(\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}}) \cdot(\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{C})
\end{aligned}
$$

Description of the Laws of Boolean Algebra

Prove the following Boolean expression

$$
(A+B)(\bar{A} \bar{C}+C) \overline{(\bar{B}+A C)}=\bar{A} B .
$$

6. Solution:

$$
\begin{aligned}
(A+B)(\overline{A C} \bar{C}+C) \overline{(\bar{B}+A C)}= & (A+B)+(\bar{A} \bar{C}+C)(\overline{\bar{B}} \cdot \overline{\mathrm{AC}}) \\
= & (A+B)(\bar{A} \bar{C}+C)(B \cdot \overline{\mathrm{AC}}) \\
= & {[A \bar{A} \bar{C}+A C+\bar{A} \bar{C} B+B C][B(\overline{\mathrm{~A}}+\bar{C})] } \\
= & (A C+\bar{A} \bar{C} B+B C) \cdot(B \bar{A}+B \bar{C}) \\
= & A C \cdot B \bar{A}+A C \cdot B \bar{C}+\bar{A} \bar{C} B \cdot B \bar{A} \\
& +\bar{A} \bar{C} B \cdot B \bar{C}+B C \cdot B \bar{A}+B C \cdot B \bar{C} \\
= & 0+0+\bar{A} B \bar{C}+\bar{A} \bar{C} B+B C \bar{A}+0 \\
= & \bar{A} B(\bar{C}+\bar{C}+C) \\
= & \bar{A} B
\end{aligned}
$$

THANK YOU

