CE short circuit current gain using hybrid- π model:

Figure 4.6.1 shows the Hybrid- π model for a single transistor with a resistive load R_{L}.

Figure 4.6.1 Hybrid- $\boldsymbol{\pi}$ model for a single transistor with a resistive load RL

Miller capacitance is $\mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{b}^{\prime} \mathrm{c}}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}\right)$
Here, $\mathrm{R}_{\mathrm{L}}=0$
$\therefore \quad \mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{b}^{\prime} \mathrm{c}}\left(\mathrm{C}_{\mathrm{c}}\right)$
Parallel combination of $r_{b e}$, and $\left(C_{e}+C_{c}\right)$ is given as

$$
\begin{aligned}
Z & =\frac{r_{b^{\prime} \mathrm{e}} \times \frac{1}{j \omega\left(C_{e}+C_{c}\right)}}{r_{b^{\prime} \mathrm{e}}+\frac{1}{j \omega\left(C_{e}+C_{c}\right)}} \\
& =\frac{r_{b^{\prime}}}{1+j \omega r_{b^{\prime} \mathrm{e}}\left(C_{e}+C_{c}\right)}
\end{aligned}
$$

Figure 4.6.2 Simplified Hybrid pi model
Diagram Source Brain Kart

$$
\begin{gathered}
\mathrm{V}_{\mathrm{b} \text { 'e }}=\mathrm{I}_{\mathrm{b}} \mathrm{Z} \\
\mathrm{Z}=\mathrm{V}_{\mathrm{b}, \mathrm{e}} / \mathrm{I}_{\mathrm{b}}
\end{gathered}
$$

The current gain for the circuit figure 4.6 .2 is,

$$
\begin{aligned}
A_{i} & =\frac{I_{L}}{I_{b}}=\frac{-g_{m} V_{b^{\prime} e}}{I_{b}} \because I_{L}=-g_{m} V_{b^{\prime} \mathrm{e}} \\
A_{i} & =-g_{m} Z \\
& =\frac{-g_{m} r_{b^{\prime}}}{1+j \omega r_{b_{e}}\left(C_{e}+C_{c}\right)} \\
A_{i} & =\frac{-h_{f e}}{1+j \omega r_{b_{c}}\left(C_{e}+C_{c}\right)}
\end{aligned}
$$

Figure 4.6 .3 shows the Frequency Vs Current Gain

Figure 4.6.3 Frequency Vs Current Gain

$$
\begin{gathered}
f_{\beta}=\frac{1}{2 \pi r_{b c}\left(C_{e}+C_{c}\right)} \\
A_{i}=\frac{-h_{f_{e}}}{1+j \frac{f}{f_{\beta}}} \\
\left|A_{i}\right|=\frac{h_{f_{e}}}{\sqrt{1+\left(\frac{f}{f_{\beta}}\right)^{2}}}
\end{gathered}
$$

$\mathrm{f}_{\mathrm{\beta}}$ (Cutoff frequency):

It is the frequency at which the transistor short circuit CE current gain drops by 3 dB or $1 / \sqrt{ } \sqrt{ }$ times from its value at low frequency. It is given as,

$$
f_{\beta}=\frac{1}{2 \pi r_{b^{e} e}\left(C_{e}+C_{c}\right)}
$$

or

$$
=\frac{g_{b e}}{2 \pi\left(C_{e}+C_{c}\right)}
$$

$$
=\frac{1}{h_{f e}} \frac{g_{m}}{2 \pi\left(C_{e}+C_{c}\right)} \quad \because g_{b^{\prime} e}=\frac{1}{r_{b_{e}}}=\frac{g_{m}}{h_{f e}}
$$

f α (Cut-off frequency):

It is the frequency at which the transistor short circuit CB current gain drops by 3 dB or $1 / \sqrt{ } \sqrt{ } 2$ times from its value at low frequency.

The current gain for CB configuration is given as,

$$
A_{i}=\frac{-h_{\mathrm{fb}}}{1+j \frac{f}{f_{\alpha}}}
$$

$$
\text { where } \quad \begin{aligned}
f_{\alpha} & =\frac{1}{2 \pi r_{b^{\prime}}\left(1+h_{\mathrm{fb}}\right) \mathrm{C}_{\mathrm{e}}} \\
& =\frac{1+\mathrm{h}_{\mathrm{fe}}}{2 \pi r_{\mathrm{b}^{\prime} \mathrm{e}} C_{\mathrm{e}}} \approx \frac{h_{\mathrm{fe}}}{2 \pi r_{\mathrm{b}^{\prime} \mathrm{e}} C_{\mathrm{e}}}
\end{aligned}
$$

$$
\left|A_{i}\right|=\frac{h_{f b}}{\sqrt{1+\left(\frac{f}{f_{\alpha}}\right)^{2}}}
$$

At

$$
\begin{aligned}
f & =f_{\alpha} \\
\left|A_{i}\right| & =\frac{h_{f b}}{\sqrt{2}}
\end{aligned}
$$

Parameter f_{T} :

It is the frequency at which short circuit CE current gain becomes unity. at $\mathrm{f}=\mathrm{fT}$,

$$
1=\frac{\mathrm{h}_{\mathrm{fe}}}{\sqrt{1+\left(\frac{f_{\mathrm{T}}}{f_{\beta}}\right)^{2}}}
$$

The ratio of $\mathrm{fT} / \mathrm{f} \beta$ is quite large compared to 1 .

$$
\mathrm{fT}=\mathrm{gm}_{\mathrm{m}} / 2 \pi \mathrm{Ce}
$$

Current gain with resistive load:

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{c}}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}\right)
$$

For further simplification in figure 4.6.4,
At output circuit value of Cc can be calculated as,

Figure 4.6.4. Simplified hybrid $\boldsymbol{-} \boldsymbol{\pi}$ model for $\mathbf{C E}$ with $\mathbf{R}_{\mathbf{L}}$ Diagram Source Brain Kart

$$
\begin{aligned}
\frac{1}{\frac{j \omega C_{c}}{\frac{k-1}{k}}} & \approx \frac{1}{j \omega C_{c}} \\
C_{c}\left(\frac{k}{k-1}\right) & \approx C_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{V}_{\mathrm{b}}{ }^{\text {b }}{ }^{\text {e }} \\
& \text { Ib } \\
& \mathrm{A}_{\mathrm{i}}=\frac{-\mathrm{h}_{\mathrm{fe}}}{1+\mathrm{j}\left(\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{H}}}\right)} \\
& \left|A_{i}\right|=\frac{h_{f e}}{\sqrt{1+\left(\frac{f}{f_{H}}\right)^{2}}} \\
& \text { At } \\
& f=f_{H} \\
& A_{i}=\frac{h_{\text {fe }}}{\sqrt{2}}
\end{aligned}
$$

fH is the frequency at which the transistor gain drops by 3 dB or $1 / \sqrt{ } 2$ times from its value at low frequency in figure 4.6.5. It is given as

$$
\begin{aligned}
\mathrm{f}_{\mathrm{H}} & =\frac{1}{2 \pi \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}} \mathrm{C}_{\mathrm{eq}}} \\
& =\frac{1}{2 \pi r_{\mathrm{b}^{\prime} \mathrm{e}}\left[\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{c}}\left(1+g_{\mathrm{m}} R_{\mathrm{L})}\right]\right.} \\
\mathrm{R}_{\mathrm{L}} & =0 \\
\mathrm{f}_{\mathrm{H}} & =\frac{1}{2 \pi r_{\mathrm{b}^{\prime} \mathrm{e}}\left[\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{c}}\right]}=\mathrm{f}_{\beta}
\end{aligned}
$$

Figure 4.6.5. Variation \mathbf{f}_{H} with \mathbf{R}_{L}

Current gain including source resistance:

Figure 4.6.6. shows hybrid pi Equivalent circuit with current source

Figure 4.6.6. Equivalent circuit with current source
Diagram Source Brain Kart

$$
\begin{aligned}
& \frac{I_{\mathrm{L}}}{I_{\mathrm{S}}}=\frac{-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}} \mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{r}_{\mathrm{bb}^{\prime}}+\mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}}} \\
\mathrm{~A}_{\text {is }} \text { at low frequency }= & \\
= & \frac{-\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{h}_{\mathrm{ie}}}
\end{aligned}
$$

Voltage gain including source resistance:

$$
\begin{aligned}
& A_{v s}=\frac{V_{o}}{V_{s}}=\frac{I_{L}}{I_{s}} \frac{R_{L}}{R_{s}}=\frac{-g_{m} Z^{s} R_{s}}{R_{s}+r_{b b^{\prime}}+Z} \times \frac{R_{L}}{R_{s}} \\
& =\frac{-\mathrm{g}_{\mathrm{m}} \mathrm{Z} \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{r}_{\mathrm{bb}^{\prime}}+\mathrm{Z}} \\
& A_{\text {vs low }}=\frac{I_{L}}{I_{s}} \frac{R_{L}}{R_{s}}=\frac{-h_{f e} R_{s}}{R_{s}+h_{\text {ie }}} \times \frac{R_{L}}{R_{s}} \\
& =\frac{-\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{h}_{\mathrm{ie}}}
\end{aligned}
$$

Cutoff frequency including source resistance:

$$
\begin{aligned}
& A_{\text {is high }}=\frac{A_{\text {is }}}{1+j\left(\frac{f}{f_{H}}\right)} \\
& A_{\text {vs high }}=\frac{A_{\text {vs }}}{1+j\left(\frac{f}{f_{H}}\right)} \\
& \text { where, } \quad f_{H}=\frac{1}{2 \pi R_{\text {eq }} C_{e q}} \\
& \text { where, } \quad R_{e q}=r_{b^{\prime} e} \|\left(r_{b b^{\prime}}+R_{s}\right) \\
& \text { and } \\
& C_{e q}=C_{e}+C_{c}\left[1+g_{m} R_{L}\right]
\end{aligned}
$$

For $R_{L}=0$,

$$
\begin{aligned}
f_{H} & =\frac{1}{2 \pi R\left(C_{e}+C_{c}\right)} \\
& =\frac{f_{T}}{g_{m} R} \quad \because f_{T}=\frac{g_{m}}{2 \pi\left(C_{e}+C_{c}\right)} \\
& =\frac{h_{f e} f_{\beta}}{g_{m} R} \quad \because \quad f_{T}=h_{f e} f_{\beta} \\
& =\frac{f_{\beta}}{g_{b \cdot e} R} \quad \because g_{b e}=\frac{g_{m}}{h_{f e}}
\end{aligned}
$$

Gain Bandwidth Product:

i. Gain Bandwidth Product for Voltage:

$$
\begin{aligned}
\left|A_{\text {vs low }} f_{H}\right| & =\left|A_{\text {vso }} f_{H}\right|=\frac{-h_{\mathrm{fe}} R_{\mathrm{L}}}{\mathrm{R}_{\mathrm{s}}+h_{\mathrm{ie}}} \times \frac{1}{2 \pi R_{e q} C_{e q}} \\
=\mathrm{R}_{\mathrm{L}} & \mathrm{f}_{\mathrm{T}} \\
\mathrm{R}_{\mathrm{s}}+\mathrm{r}_{\mathrm{bb}}, & 1+2 \pi \mathrm{f}_{\mathrm{T}} \mathrm{C}_{\mathrm{C}} \mathrm{R}_{\mathrm{L}}
\end{aligned}
$$

ii. Gain Bandwidth Product for current:

$$
\begin{aligned}
\left|A_{i s o} \times f_{H}\right| & =\frac{g_{\mathrm{m}} \mathrm{R}_{\mathrm{s}}}{2 \pi \mathrm{C}\left(\mathrm{R}_{\mathrm{s}}+\mathrm{r}_{\mathrm{b} b^{\prime}}\right)} \\
& =\frac{\mathrm{f}_{\mathrm{T}}}{1+2 \pi \mathrm{f}_{\mathrm{T}} \mathrm{C}_{\mathrm{c}} \mathrm{R}_{\mathrm{L}}} \cdot \frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{r}_{\mathrm{bb} b^{\prime}}}
\end{aligned}
$$

