

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II FOURIER TRANSFORM

PROPERTIES OF JOURNEIR TRANSFORMS:

1) LINEAR PROPERTY:

show that the operator 'F' is linear.

(a) F[aqm>+ bg(m)] = a F[q(m)] + b F[g(m)]

Now F[a](m) + bg(m)]

Whit F[z(m)] = $\sqrt{2\pi}$ | $\sqrt{2}$ |

III Fs [a f (n) + bg (n)] = a Fs [f(n)] + b Fs [g (n)]

Fe [a f (n) + bg (n)] = a Fe [f (n)] + b Fe [g (n)]

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II FOURIER TRANSFORM

Shifting property:

(1)
$$F[g(m-a)] = e^{isa} F(s)$$

(ii) $F[e^{ian}g(m)] = F(s+a)$

(1) $F[g(m-a)] = e^{isa} F(s)$

What $F[g(m)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(m) e^{isn} dn$

Now $F[g(m-a)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(m) e^{isn} dn$

put $m-a = P \Rightarrow dn = dP$.

 $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(p) e^{isa} e^{isP} dp$
 $= e^{isa} \int_{-\infty}^{\infty} g(p) e^{isP} dp$
 $= e^{isa} F(s)$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II FOURIER TRANSFORM

(ii)
$$F[e^{i\alpha\eta}_{t}(n)] = F(s+a)$$

When $F[f(n)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(n)e^{isn}dn$

Now $F[e^{i\alpha\eta}_{t}(n)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\alpha\eta}_{t}f(n)e^{isn}dn$
 $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i(s+a)\eta}_{t}(n) dn$
 $= F(s+a)\eta$.

3> CHANGE OF SCALE PROPERTY:

$$F[S(an)] = \frac{1}{a} f(S), a>0$$
Whi
$$F[S(an)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} S(n)e^{iSn} dn$$

$$F[S(an)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} J(an)e^{iSn} dn$$

$$Put \ t = an \implies dt = a dn$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} J(t)e^{iSt} dt$$

= 1 / 1 8(E) e 15 de dt

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II FOURIER TRANSFORM

5) MODULATION (PROPERTY) THEOREM:

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT-II FOURIER TRANSFORM

Find Fourier usine & sine teamform q ne-an

Miven: mom=ne-an; here gin = e-an.

Now.
$$Fs[ne^{-\alpha n}] = -\frac{d}{ds} Fc[e^{-qn}]$$

$$= -\frac{d}{ds} \left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\alpha n} \cos sn \, dn\right]$$

$$= -\frac{d}{ds} \left[\sqrt{\frac{2}{\pi}} \left[\frac{\alpha}{\alpha^{2} + s^{2}}\right]\right]$$

$$= -\sqrt{\frac{2}{\pi}} \frac{\alpha}{(\alpha^{2} + s^{2})^{2}} \cdot (-2s)$$

$$Fs[ne^{-\alpha n}] = \sqrt{\frac{2}{\pi}} \cdot \frac{2\alpha s}{(\alpha^{2} + s^{2})^{2}}$$

Now
$$Fc [ne^{-\alpha n}] = \frac{d}{ds} Fs [e^{-\alpha n}]$$

$$= \frac{d}{ds} \left[\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\alpha n} m s n dn \right]$$

$$= \frac{d}{ds} \left[\sqrt{\frac{2}{\pi}} \left[\frac{S}{S^{2} + \alpha^{2}} \right] \right]$$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{(S^{2} + \alpha^{2})(1) - S(2S)}{(S^{2} + \alpha^{2})^{2}} \right]$$

$$= \sqrt{\frac{2}{\pi}} \frac{\alpha^{2} - S^{2}}{(S^{2} + \alpha^{2})^{2}}$$