

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CIVIL ENGINEERING

19CET203- Mechanics Of Solids

II YEAR III SEM

UNIT 2 – SHEAR AND BENDING BEAMS

SHEAR FORCE:

The algebraic sum of the vertical forces at any section of a beam to the right or left of the section is known as **Shear Force.**

BENDING MOMENT:

The algebraic sum of the moments of all the forces acting to the right and left of the section is known as **Bending**Moment

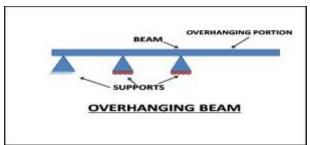
Types of Beam:

- Cantilever Beam
- Simply Supported Beam
- Overhanging Beam
- Fixed Beam
- Continuous Beam

1. Cantilever Beam:

The picture can't be displayed.

2. Simply Supported Beam:

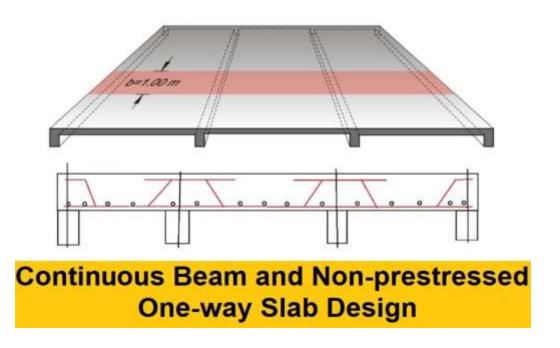


Simply Supported Beam

Reshma Raj AP/CIVIL ENGINEERING Mechanics Of Solids Slide 3/10

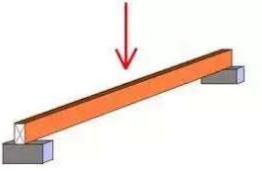
3. Overhanging Beam:

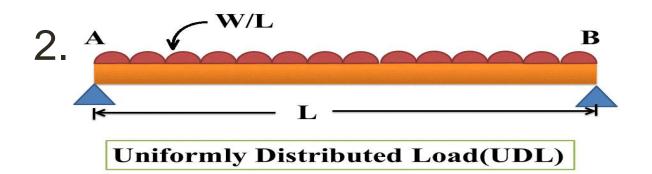
4. Fixed Beam:


Fixed Beam

Reshma Raj AP/CIVIL ENGINEERING Mechanics Of Solids Slide 4/10

5. Continuous Beam:

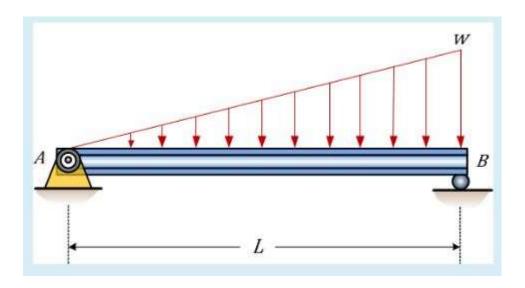

Reshma Raj AP/CIVIL ENGINEERING Mechanics Of Solids Slide 5/10



*

TYPES OF LOAD:

1. Concentrated or Point Load:



Reshma Raj AP/CIVIL ENGINEERING Mechanics Of Solids Slide 6/10

3. Uniformly Varying Load:

Reshma Raj AP/CIVIL ENGINEERING Mechanics Of Solids Slide 7/10

STATICALLY DETERMINATE STRUCTURES AND STATICALLY INDETERMINATE STRUCTURES:

If a structure is determinate, you can determine reactions, the stresses developed, and the deflection by just applying the principle of equilibrium;

On the other hand, if it is indeterminate, you would need to find additional conditions based on compatibility.

Majority of real-life structures are indeterminate and a lot harder to analyse compared to determinate structures.

CLASSIFICATION OF STRUCTURAL ANALYSIS PROBLEMS

	Statically determinate	Statically indeterminate
	Equilibrium equations could be directly solved, and thus forces could be calculated in an easy way	Equilibrium equations could be solved only when coupled with physical law and compatibility equations
	Stress state depends only on geometry & loading	Stress state depends on rigidities
	Not survivable, moderately used in modern aviation (due to damage tolerance requirement)	Survivable, widely used in modern aviation (due to damage tolerance property)
	Easy to manufacture	Hard to manufacture

THANKYOU

Reshma Raj AP/CIVIL ENGINEERING Mechanics Of Solids Slide 10/10