UNIT - 1

STRESS AND STRAIN

Part-A

1. State Hooke's law
(AU Nov/Dec2016, April/May 2017)
It states that within elastic limit stress is proportional to strain. Mathematically

$$
\mathrm{E}=\text { Stress } / \text { Strain }
$$

Where E = Young's Modulus
2. Draw the stress- strain diagram for mild steel and indicate the salient points.
(AU April/May 2017)

3. Define Poisson's Ratio.
(AU Nov/Dec 2014, Nov/Dec 2015, Nov/Dec 2016)
The ratio lateral strain to longitudinal strain produced by a single stress is known as Poisson's Ratio.

It is denoted by μ (or) $1 / m$
4. Expression for strain energy stored in a prismatic bar subjected to an axial load.
(Nov/Dec 2015)
Energy stored in the body

$$
\mathrm{U}=\frac{\sigma^{2}}{2 \mathrm{E}} \times \mathrm{V}
$$

5. Define Bulk modulus.

(AU Nov/Dec 2014)
It is defined as the ratio of uniform stress intensity to the volumetric strain. It is denoted by the symbol K .
$\mathrm{K}=$ Direct stress/Volumetric strain

6. Define force.

A force is any interaction that, when unopposed, will change the motion of an object. In other words, a force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate.

7. Define stress.

Stress is the internal resistance offered by the body to the external load applied to it per unit cross sectional area. Stresses are normal to the plane to which they act and are tensile or compressive in nature.

It represneted by ' σ '

$$
\sigma=\mathrm{P} / \mathrm{A}
$$

8. What are the types of stresses?
i) Tensile stress
ii) Compressive stress
iii) Shear stress
9. What is the elongation of the bar due its self weight?

$$
\delta \mathrm{L}=\mathrm{WL} / 2 \mathrm{E}
$$

10. Define Principle of Superposition.

The principle of superposition states that when there are numbers of loads are acting together on an elastic material, the resultant strain will be the sum of individual strains caused by each load acting separately.

11. Define stain.

When a single force or a system force acts on a body, it undergoes some deformation. This deformation per unit length is known as strain. Mathematically strain may be defined as deformation per unit length.

Strain=Elongation/Original length

12. Deine Elasticity.

The property of material by virtue of which it returns to its original shape and size upon removal of load is known as elasticity.

13. Define shear strain.

The distortion produced by shear stress on an element or rectangular block is shown in the figure. The shear strain or 'slide' is expressed by angle ϕ and it can be defined as the change in the right angle. It is measured in radians and is dimensionless in nature.

14. Define Modulus of Rigidity.

For elastic materials it is found that shear stress is proportional to the shear strain within elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol ' G ' or ' C '.
$\mathrm{G}=$ shear stress/ shear strain $=\tau / \Phi$
15. What is the Relationship between modulus of elasticity (E) and bulk modulus (K)?

$$
\mathrm{E}=3 \mathrm{~K}(1-2 \mu)
$$

16. What is the Relationship between modulus of elasticity (E) and modulus of rigidity (\mathbf{G}) ?

$$
\mathrm{E}=2 \mathrm{G}(1+\mu)
$$

17. What is the relationship among three elastic contants?

$$
\mathrm{E}=9 \mathrm{KG} / 3 \mathrm{~K}+\mathrm{G}
$$

18. Define: Young's modulus.

The ratio of stress and strain is constant within the elastic limit. This constant is known as Young"s modulus. $\mathrm{E}=$ Stress /Strain
19. Define: Longitudinal strain.

When a body is subjected to axial load P , there is an axial deformation in the length of the body. The ratio of axial deformation to the original length of the body is called lateral strain. Longitudinal strain= Change in length/Original length $=\partial \mathrm{L} / \mathrm{L}$

20. What is the radius of Mohr's circle?

Radius of Mohr's circle is equal to the maximum shear stress

21. Define: Lateral strain.

The strain at right angles to the direction of the applied load is called lateral strain. Lateral strain= Change in breadth (depth)/Original breadth $($ depth $)=\partial \mathrm{b} / \mathrm{b}$ or $\partial \mathrm{d} / \mathrm{d}$

22. Define: shear stress and shear strain.

The two equal and opposite force act tangentially on any cross sectional plane of the body tending to slide one part of the body over the other part. The stress induced is called shear stress and the corresponding strain is known as shear strain.

23. Define: volumetric strain.

The ratio of change in volume to the original volume of the body is called volumetric strain. Volumetric strain= change in volume / original volume ev $=\partial \mathrm{V} / \mathrm{V}$.

24. What is compound bar?

A composite bar composed of two or more different materials joined together such that the system is elongated or compressed in a single unit.

25. What you mean by thermal stresses?

If the body is allowed to expand or contract freely, with the rise or fall of temperature no stress is developed, but if free expansion is prevented the stress developed is called temperature stress or strain.
26. Define principle stresses and principle plane.

Principle stress: The magnitude of normal stress, acting on a principal plane is known as principal stresses. Principle plane: The planes which have no shear stress are.known as principal planes.

27. What Is the use of Mohr's circle?

To find out the normal, resultant and principle stresses and their planes.

28. List the methods to find the stresses in oblique plane?

a) Analytical method b) Graphical method

29. Define strain energy.

Whenever a body is strained, some amount of energy is absorbed in the body. The energy which is absorbed in the body due to straining effect is known as strain energy.

PART-B

Formula Used:

1. Stress, $(\sigma)=\frac{\text { Load }}{\text { Area }}=\frac{\mathrm{P}}{\mathrm{A}} \ldots \ldots \ldots . \mathrm{N} / \mathrm{mm}^{2}$.
2. \quad Strain, $(\mathrm{e})=\frac{\text { Change in length }}{\text { Change Length }}=\frac{\Delta \ell}{\ell} \ldots \ldots$.
3. Young's modulu's $(E)=\frac{\text { Stress }}{\text { Strain }}=\frac{\sigma}{\mathrm{e}} \ldots \ldots . . \mathrm{N} / \mathrm{mm}^{2}$.
4. Factor of safety $=\frac{\text { Ultimate Stress }}{\text { warning Stress }}$
5. Derive a relation for change in length of a bar hanging freely under its own weight.
(AU April/May2017)

ELONGATION OF BAR DUE TO ITS OWN WEIGHT

Fig. 1.25 shows a bar AB fixed at end A and hanging freely under its own weight.

Let
$L=$ Length of bar,
$\mathrm{A}=$ Area of cross-section,
$\mathrm{E}=$ Young's modulus for the bar material,
$\omega=$ Weight per unit volume of the bar material.
Consider a small strip of thickness dx at a distance x from the lower end.

Fig. 1.25
Weight of the bar for a length of x is given by,
$P=$ Specific weight \times Volume of bar upto length x

$$
=\omega \times \mathrm{A} \times \mathrm{x}
$$

The means that on the strip, a weight of $\omega \times \mathrm{A} \times \mathrm{x}$ is acting in the downward direction. Due to this weight, there will be some increase in the length of element. But length of the element is dx .

Now stress on the element
$\frac{\text { weight acting on element }}{\text { Area of cross }- \text { sec tion }}=\frac{\omega \times \mathrm{A} \times \mathrm{x}}{\mathrm{A}}=\omega \times \mathrm{x}$
The above equation shows that stress due to self weight in a bar is not uniforms. It depends on x . The stress increase with the increase of x .

$$
\text { Strain in the element }=\frac{\text { Stress }}{E}=\frac{\omega \times x}{E}
$$

\therefore Elongation of the element

$$
\begin{aligned}
& =\text { Strain } \times \text { Length of element } \\
& =\frac{\omega \times x}{\mathrm{E}} \times \mathrm{dx}
\end{aligned}
$$

The elongation of the bar is obtained by integrating the above equation between limits zero and L.

$$
\begin{aligned}
\delta L & =\int_{0}^{L} \frac{\omega \times x}{E} d x=\frac{\omega}{E} \int_{0}^{L} x \cdot d x \\
& =\frac{\omega}{E}\left[\frac{x^{2}}{2}\right]_{0}^{L}=\frac{\omega}{E} \times \frac{L^{2}}{2} \\
& =\frac{W L}{2 E} \quad(\because W=\omega \times L)
\end{aligned}
$$

2. i) Determine the change in length, breath and thickness of a steel bar which is 4 m long; 30 mm wide; 30 mm thick and subjected to an axial pull of 30 kN in the direction of its longer. Take $E=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and poisons ratio $=0.3$.

Given:

$$
\begin{array}{lrl}
\ell=4 \mathrm{~m}=4000 \mathrm{~mm} ; \quad \mathrm{b}=30 \mathrm{~mm} ; & \mathrm{d}=20 \mathrm{~mm} \\
\mathrm{P}=30 \mathrm{kN} ; & \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} ; & 1 / \mathrm{m}=0.3
\end{array}
$$

Required:

$$
\Delta \mathrm{L}, \Delta \mathrm{~d}, \Delta \mathrm{~b}=?
$$

Solution:

Area of the c / s section $=\mathrm{b} \times \mathrm{t}=30 \times 20=600 \mathrm{~mm}^{2}$
Now strain in the direction of land (or) longitudinal strain.

$$
\begin{aligned}
& =\frac{\text { Stress }}{E}=\frac{\text { Load }}{\text { Area } \times \mathrm{E}}=\frac{\mathrm{P}}{\mathrm{AE}} \\
& =\frac{30 \times 10^{3}}{600 \times 2 \times 10^{3}}
\end{aligned}
$$

Longitudinal stress $=0.00025$
But, longitudinal strain $=$ longitudinal strain \times length

$$
=0.00025 \times 4000=1 \mathrm{~mm}
$$

Poision's ratio $\left(\frac{1}{\mathrm{~m}}\right)=\frac{\text { Lateral strain }}{\text { Linear Strain }}$
ii) Determine due to young's modulus and poisons ratio of a metallic bar of length 30 cm breath 4 cm and depth 4 cm when the bar is subjected to an axial compressive load of 400 cm The decrease in length is given as 0.07500 and increase in breath is 0.003 cm .

Given:

$\ell=30 \mathrm{~cm}=300 \mathrm{~mm} ; \quad \mathrm{b}=4 \mathrm{~cm}=40 \mathrm{~mm} ; \quad \mathrm{d}=4 \mathrm{~cm}=40 \mathrm{~mm} ;$
$\mathrm{P}=400 \mathrm{KM} ; \quad \Delta \mathrm{L}=0.075 \mathrm{~cm}=0.75 \mathrm{~cm} ; \quad \Delta \mathrm{b}=0.003 \mathrm{~cm}$

Required:

$\mathrm{E}=? \quad 1 / \mathrm{m}=$?

Solution:

$A=b \times d=40 \times 40=1600 \mathrm{~mm}^{2}$
Longitudinal strain $=\frac{\Delta \ell}{\ell}=\frac{0.75}{300}=0.0025$
LiteralStrain $=\frac{\Delta \mathrm{b}}{\mathrm{b}}=\frac{0.03}{40}=0.00075$

$$
\begin{aligned}
\text { Poission's Ratio }(1 / \mathrm{m}) & =\frac{\text { Lateral strain }}{\text { Longitudinal strain }} \\
& =\frac{0.00075}{0.0025}
\end{aligned}
$$

$$
\mu \text { or } 1 / \mathrm{m}=0.3
$$

ii) Young's modulus (E):

$$
\begin{aligned}
\text { Longitudinal strain } & =\frac{\text { Stress }}{E} \\
& =\frac{\mathrm{P}}{\mathrm{~A} \cdot \mathrm{E}}
\end{aligned}
$$

iii) A steel bar 300 mm long, 50 mm wide and 40 mm is thick is subjected to pull of 300 km in the direction of its length. Determine change in the volume, Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{m}=4$.
[Nov / Dec 2016]

Given:-

$$
\begin{aligned}
& \ell=300 \mathrm{~mm} ; \quad \mathrm{b}=40 \mathrm{~mm} ; \quad \mathrm{t}=40 \mathrm{~mm} ; \quad \mathrm{P}=300 \mathrm{KM} \\
& \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} ; \quad \mathrm{m}=4
\end{aligned}
$$

Required:

Change in Volume, $d v=$?

Solution:

Original volume, $\mathrm{v}=\ell \times \mathrm{b} \times \mathrm{t}=500 \times 50 \times 40=600 \times 10^{3} \mathrm{~mm}^{2}$
We know,
LongitudinalStrain $(\mathrm{a})=\frac{\operatorname{Stress}(\sigma)}{\text { Young's } \operatorname{Modulus}(\tau)}$
$\operatorname{Stress}(\sigma)=\frac{P}{A}=\frac{300 \times 10^{3}}{50 \times 40}=150 \mathrm{~N} / \mathrm{mm}^{2}$
\therefore Longitudinal strain $=\frac{150}{2 \times 10^{3}}=0.00075$
Now,
Volumetric strain, (ev) =

$$
\begin{aligned}
& \frac{\Delta \ell}{\ell}\left(1-\frac{2}{\mathrm{~m}}\right) \\
& =0.00075\left(1-\frac{2}{4}\right)
\end{aligned}
$$

$$
\mathrm{ev}=0.00375
$$

But,
Volumetic strain, $e v=\frac{\text { change in volume }(\Delta v)}{\text { Original volume }(v)}$
change in volume $(\Delta v)=e v \times v$
3. A rod 15 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kN . Find the
i) Stress ii) Strain and iii) Elongation of the rod. If Young' Modulus $=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$.

Sol, Given : Length of the rod, $\mathrm{L}=150 \mathrm{~cm}$
Diameter of the rod, $\quad \mathrm{D}=2.0 \mathrm{~cm}=20 \mathrm{~mm}$
Area,

$$
\mathrm{A}=\frac{\pi}{4}(20)^{2}=100 \pi \mathrm{~mm}^{2}
$$

Axial pull,

$$
\mathrm{P}=20 \mathrm{KN}=20,000 \mathrm{~N}
$$

Modulus of elasticity, $\quad \mathrm{E}=2.0 \times 10^{2} \mathrm{~N} / \mathrm{mm}^{2}$
i) The stress (σ) is given by equation (1.1) as

$$
\sigma=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{20000}{100 \pi}=63.662 \mathrm{~N} / \mathrm{mm}^{2}, \text { Ans }
$$

ii) Using equation (1.5), the strain is obtained as

$$
\begin{aligned}
\mathrm{E} & =\frac{\sigma}{\mathrm{e}} \\
\therefore \text { Strain, } \mathrm{e} & =\frac{\sigma}{\mathrm{E}}=\frac{63.662}{2 \times 10^{5}}=0.000318 . \text { Ans. }
\end{aligned}
$$

iii) Elongation is obtained by using equation (1.5) as

$$
\mathrm{e}=\frac{\mathrm{dL}}{\mathrm{~L}}
$$

\therefore Elongation, $\mathrm{dL}=\mathrm{e} \times \mathrm{L}$

$$
=0.000318 \times 150=0.0477 \mathrm{~cm} . \mathrm{Ans}
$$

4. Find the Minimum diameter of a steel wire, which is used to raise a load of 4000 N if the stress in the wire is not to exceed $95 \mathrm{MN} / \mathrm{m}^{2}$.
Sol, Given: load, $\mathrm{P}=4000 \mathrm{~N}$
Stress, $\sigma=95 \mathrm{MN} / \mathrm{m}^{2} \quad\left(\mathrm{M}=\mathrm{Mega}=10^{6}\right)$

$$
=95 \mathrm{~N} / \mathrm{mm}^{2} \quad\left(10^{6} \mathrm{~N} / \mathrm{mm}^{2}\right)
$$

Let, $d=$ Diameter of wire in mm

$$
\begin{aligned}
& \therefore \text { Area, } \quad A \frac{x}{4} D^{2} \\
& \text { Now } \quad \text { Stress }=\frac{\text { Load }}{\text { Area }}=\frac{P}{A}
\end{aligned}
$$

$$
\begin{aligned}
& 95= \\
& \frac{4000}{\frac{x}{4} D^{2}}=\frac{4000 \times 4}{\pi D^{2}} \text { or }^{2}=\frac{4000 \times 4}{\pi \times 95}=53.61 \\
& \therefore \quad \quad D=7.32 \mathrm{~mm} . \text { Ans. }
\end{aligned}
$$

5. A tensile test was conducted on a mild steel bar. The following data was obtained from the test:
i) Diameter of the steel bar

$$
\begin{aligned}
& =3 \mathrm{~cm} \\
& =20 \mathrm{~cm} \\
& =250 \mathrm{kN}
\end{aligned}
$$

ii) Gauge length of the bar
iii) Load at elastic limit
iv) Extension at a load of 150 kN
$=0.21 \mathrm{~mm}$
v) Maximum load

$$
=380 \mathrm{kN}
$$

vi) Total extension $\quad=60 \mathrm{~mm}$
vii) Diameter of the rod at the failure $=2.25 \mathrm{~cm}$.

Determine : (a) the young's modulus
(b) the stress at lastic Limit.
(c) the percentage elongation, and
(d) the percentage decrease in area.

Sol,m Area of the rod

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{4} \mathrm{D}^{2}=\frac{\pi}{4}(3)^{2} \mathrm{~cm}^{2} \\
& =7.0685 \mathrm{~cm}^{2}=7.0685 \times 10^{-4} \mathrm{~m}^{2} . \quad\left[\therefore \mathrm{cm}^{2}=\left(\frac{1}{100} \mathrm{~m}\right)^{2}\right]
\end{aligned}
$$

(a) To find young's modulus, first calculate the value of stress and strain with elastic limit. The load at elastic limit is given but the extension corresponding to the load at elastic limit is not given. But a load of 150 kN (which is within elastic limit) and corresponding extension of 0.21 mm are given. Hence these values are used for stress and strain within elastic limit.

$$
\begin{aligned}
& \therefore \quad \text { stress }=\frac{\text { Load }}{\text { Area }}=\frac{150 \times 1000}{7.0685 \times 10^{-4}} \mathrm{~N} / \mathrm{m}^{2} \quad(\therefore 1 \mathrm{kN}=1000 \mathrm{~N}) \\
& \text { and } \quad \text { Strain }= \\
& =\frac{\text { Increase in length }(\text { or Extension })}{\text { Original length }(\text { or Gauge length })} \\
& \\
&
\end{aligned}
$$

\therefore Young's Modulus,

$$
\begin{aligned}
& \mathrm{E}=\frac{\text { Stress }}{\text { Strain }}=\frac{21220.9 \times 10^{4}}{0.00105}=20209523 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
& \quad=202.095 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \quad\left(\therefore 10^{2}=\text { Giga }=\mathrm{G}\right) \\
& =
\end{aligned}
$$

(b.) The stress elastic limit is given by,

$$
\begin{aligned}
\text { Stress }= & \frac{\text { Load at elastic limit }}{\text { Area }}=\frac{250 \times 1000}{7.0685 \times 10^{-4}} \\
& =35368 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
& =353.68 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\left(\therefore \quad 10^{6}=\mathrm{Mega}=\mathrm{M}\right) \\
& =353.68 \mathrm{MN} / \mathrm{m}^{2} . \text { Ans. }
\end{aligned}
$$

(c) The percentage elongation is obtained as,

$$
\begin{aligned}
\text { Percentage elongation } & =\frac{\text { Total increase in Length }}{\text { Original length (or Gauge Length) }} \times 100 \\
& =\frac{60 \mathrm{~mm}}{20 \times 10 \mathrm{~mm}} \times 100=30 \% \quad \text { Ans. }
\end{aligned}
$$

(d) The percentage decrease in area is obtained as,

$$
\begin{aligned}
\text { Percentage decrease in area } & =\frac{(\text { Original area }- \text { Area at the failure })}{\text { Original area }} \times 100 \\
& =\frac{\left(\frac{\pi}{4} \times 3^{2}-\frac{\pi}{4} \times 225^{2}\right)}{\frac{\pi}{4} \times 3^{2}} \times 100 \\
& =\left(\frac{3^{2}-225^{2}}{3^{2}}\right) \times 100=\frac{(9-5.0625)}{9} \times 100=43.75 \%
\end{aligned}
$$

6. The ultimate stress for a hollow steel column which carries an axial load of 1.9 MN is $480 \mathrm{~N} / \mathrm{mm}^{2}$ If the external diameter of the column is 200 mm , determine the internal diameter. Take the Factor of safety as
SOL, Given :
Ultimate stress, $=480 \mathrm{~N} / \mathrm{mm}^{2}$

Axial load, $\quad \mathrm{P}=1.9 \mathrm{MN}=1.9 \times 10^{6} \mathrm{~N}\left(\mathrm{M}=10^{6}\right)$

$$
=1900000 \mathrm{~N}
$$

External Dia., $\quad D=200 \mathrm{~mm}$
Factor of safety $=4$
Let $d=$ internal diameter in mm
Area of cross-section of the column,

$$
\mathrm{A}=\frac{\pi}{4}\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)=\frac{\pi}{4}\left(200^{2}-\mathrm{d}^{2}\right) \mathrm{mm}^{2}
$$

Using equation (1.7) we get,

$$
\begin{aligned}
& \text { Factor of safety }=\frac{\text { Ultimate stress }}{\text { Working stress or Permissible stress }} \\
& \therefore \quad 4=\frac{480}{\text { Working stress }}
\end{aligned}
$$

Or working stress

$$
\begin{aligned}
& =\frac{480}{4}=120 \mathrm{~N} / \mathrm{mm}^{2} \\
& \therefore \quad \sigma=120 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Now using equation (1.1),. We get

$$
\sigma=\frac{\mathrm{P}}{\mathrm{~A}} \operatorname{or} 120=\frac{1900000}{\frac{\pi}{4}\left(200^{2}-\mathrm{d}^{2}\right)}=\frac{1900000 \times 4}{\pi\left(40000-\mathrm{d}^{2}\right)}
$$

Or $\quad 4000-\mathrm{d}^{2}=\frac{1900000 \times 4}{\pi \times 120}=20159.6$
Or $\quad d^{2}=4000-20159.6=19840.4$

$$
\therefore \mathrm{d}=140.85 \mathrm{~mm} \quad \text { Ans. }
$$

7. A stepped for shown in fig. 1.6 is subjected to an axially applied compressive load of 35 kN Find the maximum and minimum stresses produced.
Sol Given:
Axial load,

$$
\mathrm{P}=35 \mathrm{kN}=35 \times 10^{3} \mathrm{~N}
$$

Dia. Of upper part,
$\mathrm{D}_{1}=2 \mathrm{~cm}=20 \mathrm{~mm}$

Area of upper part,

$$
\mathrm{A}_{1}=\frac{\pi}{4}\left(20^{2}\right)=100 \pi \mathrm{~mm}^{2}
$$

Area of lower part,

$$
\mathrm{A}_{2}=\frac{\pi}{4} \mathrm{D}_{2}^{2}=\frac{\pi}{4}\left(30^{2}\right)=225 \pi \mathrm{~mm}^{2}
$$

Fig. 1.6
The stress is equal to load divided by area. Hence stress will be maximum where area is minimum. Hence stress will be maximum in upper part and minimum in lower part.

$$
\begin{array}{ll}
\therefore \text { Maximum Stress } & =\frac{\text { Load }}{\mathrm{A}_{1}}=\frac{35 \times 10^{2}}{100 \times \pi}=111.408 \mathrm{~N} / \mathrm{mm}^{2} . \text { Ans. } \\
\text { MinimumStress } & =\frac{\text { Load }}{\mathrm{A}_{2}}=\frac{35 \times 10^{2}}{225 \times \pi}=49.5146 \mathrm{~N} / \mathrm{mm}^{2} . \text { Ans. }
\end{array}
$$

8. An axial pull of $\mathbf{3 5 k N}$ is acting on a bar consisting of three lengths as shown in figure. If the young's modulus $(\mathrm{E})=2.1 \times 10^{\mathbf{3}} \mathrm{N} / \mathrm{mm}^{2}$, determine i)Stresses in each section and

ii)Total extension of the bar

Sol, Given:
Axial pull,

$$
\mathrm{P}=35000 \mathrm{~N}
$$

Length of section 1, $\quad L_{1}=20 \mathrm{~cm}=200 \mathrm{~mm}$

Dia. Of section $1, \quad D_{1}=2 \mathrm{~cm}=20 \mathrm{~cm}$
Area of section 1, $\quad \mathrm{A}_{1}=\frac{\pi}{4}\left(20^{2}\right)=100 \pi \mathrm{~mm}^{2}$
Length of section 2, $\quad L_{2}=25 \mathrm{~cm}=250 \mathrm{~mm}$
Dia. Of section 2, $\quad D_{2}=3 \mathrm{~cm}=30 \mathrm{~mm}$
Area of section 2, $\quad \mathrm{A}_{2}=\frac{\pi}{4}\left(30^{2}\right) 225 \pi \mathrm{~mm}^{2}$
Length of section 3, $\quad \mathrm{L}_{3}=22 \mathrm{~cm}=220 \mathrm{~mm}$
Dia. Of section 3, $\quad D_{3}=5 \mathrm{~cm}=50 \mathrm{~mm}$
Area of section 3, $\quad \mathrm{A}_{3}=\frac{\pi}{4}\left(50^{2}\right)=625 \pi \mathrm{~mm}^{2}$
Young's modulus $\quad \mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
i) Stresses in each section

Stress in sec tion 1, $\sigma_{1}=\frac{\text { Axial load }}{\text { Area of sec tion } 1}$

$$
=\frac{\mathrm{P}}{\mathrm{~A}_{1}}=\frac{35000}{100 \pi}=111.408 \mathrm{~N} / \mathrm{mm}^{2} . \mathrm{Ans}
$$

Stress in sec tion 2, $\sigma_{2}=\frac{\mathrm{P}}{\mathrm{A}_{2}}=\frac{35000}{225 \times \pi}=49.5146 \mathrm{~N} / \mathrm{mm}^{2}$. Ans
Stress in sec tion $3, \sigma_{3}=\frac{\mathrm{P}}{\mathrm{A}_{3}}=\frac{35000}{625 \times \pi}=17.825 \mathrm{~N} / \mathrm{mm}^{2}$. Ans.
ii) Total extension of the bar using equation(1.8), we get

$$
\begin{aligned}
\text { Total Extension } & =\frac{\mathrm{P}}{\mathrm{E}}\left[\frac{L_{1}}{\mathrm{~A}_{1}}+\frac{L_{2}}{\mathrm{~A}_{2}}+\frac{L_{3}}{\mathrm{~A}_{3}}\right] \\
& =\frac{35000}{2.1 \times 10^{5}}\left(\frac{200}{100 \pi}+\frac{250}{225 \times \pi}+\frac{220}{625 \times \pi}\right) \\
& =\frac{35000}{2.1 \times 10^{5}}(6.366+3.536+1.120)=0.183 \mathrm{~mm} . \mathrm{Ans}
\end{aligned}
$$

9. The bar shown in fig. 1.8 is subjected to a tensile load of 160 kN . If the stress is the middle portion is limited to $150 \mathrm{~N} / \mathrm{mm}^{2}$, determine the diameter of the middle portion. Find also the length of middle portion if the load if the total elongation of the bar is to be 0.2 mm . Young's modulus is given as equal to $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
Sol, Given:

Textile load,
Stress in middle portion,
Total elongation,
Total length of the bar
Young's modulus
Diameter of both end portions,

$$
\mathrm{P}=160 \mathrm{kN}=160 \times 10^{3} \mathrm{~N}
$$

$$
\sigma_{2}=150 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\mathrm{dL}=0.2 \mathrm{~mm}
$$

$$
\mathrm{L}=40 \mathrm{~cm}=400 \mathrm{~mm}
$$

$$
\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\mathrm{D}_{1}=6 \mathrm{~cm}=60 \mathrm{~mm}
$$

Area of cross-section of both end portions,

$$
\mathrm{A}_{1}=\frac{\pi}{4} \times 60^{2}=900 \pi \mathrm{~mm}^{2} .
$$

Fig. 1.8
Let

$$
\mathrm{D}_{2}=\text { Diameter of the middle portion }
$$

$\mathrm{L}_{2}=$ Length of middle portion in mm .
Length of both end points of the bar,

$$
\mathrm{L}_{1}=\left(400-\mathrm{L}_{2}\right) \mathrm{mm}
$$

Using equation (1.1), we have

$$
\begin{aligned}
& \text { Stress }=\frac{\text { Load }}{\text { Area }} \text { For the middle portion, we have } \\
& \sigma_{2}=\frac{\mathrm{P}}{\mathrm{~A}_{2}} \quad \text { where } \mathrm{A}_{2}=\frac{\mathrm{x}}{4} \mathrm{D}_{2}^{2}
\end{aligned}
$$

OR

$$
150=\frac{160000}{\frac{\pi}{4} D_{2}^{2}}
$$

$$
\therefore \quad \mathrm{D}_{2}^{2}=\frac{4 \times 160000}{\pi \times 150}=1358 \mathrm{~mm}^{2}
$$

Or

$$
\mathrm{D}_{2}=\sqrt{1358}=36.85 \mathrm{~mm}=3.685 \mathrm{~cm}
$$

\therefore Area of cross - sec tion of middle portion,

$$
\mathrm{A}_{3}=\frac{\pi}{4} \times 36.85=1066 \mathrm{~mm}^{2}
$$

Now equation (1.8), we get

Total extension, $\mathrm{dL}=\frac{\mathrm{P}}{\mathrm{E}}\left[\frac{\mathrm{L}_{1}}{\mathrm{~A}_{1}}+\frac{\mathrm{L}_{2}}{\mathrm{~A}_{2}}\right]$
Or $0.2=\frac{160000}{2.1 \times 10^{5}}\left[\frac{\left(400-\mathrm{L}_{2}\right)}{900 \pi}+\frac{\mathrm{L}_{2}}{1066}\right]$
$\left[\mathrm{L}_{1}=\left(400-\mathrm{L}_{2}\right)\right.$ and $\left.\mathrm{A}_{2}=1066\right]$

Or $\frac{0.2 \times 2.1 \times 10^{5}}{160000}=\frac{\left(400-\mathrm{L}_{2}\right)}{900 \pi}+\frac{\mathrm{L}_{2}}{1066}$
Or $0.265=\frac{1066\left(400-\mathrm{L}_{2}\right)+900 \pi \mathrm{~L}_{2}}{900 \pi \times 1066}$
Or $0.265 \times 900 \pi \times 1066=1066 \times 400-1066 \mathrm{~L}_{2}=900 \pi \times \mathrm{L}_{2}$
Or $791186-426400=\mathrm{L}_{2}(2827-1066)$
Or $364786=1761 \mathrm{~L}_{2}$

$$
\therefore \quad \mathrm{L}_{2}=\frac{364786}{1761}=207.14 \mathrm{~mm}=20.714 \mathrm{~cm} . \text { Ans. }
$$

10. A Compound bar of length 500 mm consists of a strip of aluminum 40 mm widex 15 mm thick and a strip of steel 40 mm wide $\times 10 \mathrm{~mm}$ thick rigidly joined at ends. If the bar is subjected to a load of 50 kN , find the stress developed in each material and the extension of the bar. Take modulus of elasticity of aluminum and steel as $1.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
Given:
Length, $\mathrm{L}=500 \mathrm{~mm}$
$\mathrm{Aa}=40 \times 15=600 \mathrm{~mm}^{2}$,
As $=40 \times 10=400 \mathrm{~mm}^{2}$,
Load, $\mathrm{P}=50 \mathrm{KN}=50000 \mathrm{~N} . \mathrm{Ea}=1.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

$\mathrm{Es}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

Required

i) Stress developed in each material
ii) Extension each material.

Solution:

We know,

$$
\mathbf{P}=\mathbf{P}_{1}+\mathbf{P}_{2}
$$

Total load, $\quad \mathrm{P}=\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{s}}$
Here $L_{a}+L_{s}$

$$
\begin{array}{r}
\Rightarrow \quad \frac{P_{a}}{A_{a} E_{a}}=\frac{P_{s}}{A_{s} E_{s}} \\
P_{a}=P_{s} \times \frac{A_{a} E_{a}}{A_{s} E_{s}}
\end{array}
$$

Load on aluminium,
$P_{a}=\frac{600 \times 1.1 \times 10^{5}}{400 \times 2.10 \times 10^{5}} \times P_{s}$
$\mathrm{P}_{\mathrm{a}}=0.785 \mathrm{P}_{\mathrm{s}}$
Substitute in eqn (1)
$5000=\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{s}}$
$5000=0.785 \mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{s}}$
$\mathrm{P}_{\mathrm{s}}=\frac{50000}{1.785}$
$\mathrm{P}_{\mathrm{s}}=28.011 \times 10^{3} \mathrm{~N}$
New, load on alu min ium, $\mathrm{P}_{\mathrm{a}}=0.785 \mathrm{P}_{\mathrm{s}}$

$$
\begin{aligned}
& =0.785 \times 28.011 \times 10^{3} \\
& \therefore \mathrm{P}_{\mathrm{a}}=21.988 \times 10^{3} \mathrm{~N} .
\end{aligned}
$$

i) Stress developed in each material:

Stress developed in steel,

$$
\begin{aligned}
& \sigma_{\mathrm{s}}=\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{~A}_{\mathrm{s}}}=\frac{28.011 \times 10^{3}}{400} \\
& \sigma_{\mathrm{s}}=70.02 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

ii) Extension in each material:

Change in length of aluminium = change in length of steel

$$
\begin{gathered}
\Delta \mathrm{L}_{\mathrm{a}}=\Delta \mathrm{L}_{\mathrm{s}} \\
\frac{\mathrm{P}_{\mathrm{a}} \mathrm{~L}_{\mathrm{a}}}{\mathrm{~A}_{\mathrm{a}} \mathrm{E}_{\mathrm{a}}}=\frac{\mathrm{P}_{\mathrm{s}} \mathrm{~L}_{\mathrm{s}}}{\mathrm{~A}_{\mathrm{s}} \mathrm{E}_{\mathrm{s}}} \\
\Delta \mathrm{~L}_{\mathrm{a}}=\frac{21.988 \times 10^{3} \times 500}{600 \times 1.1 \times 10^{5}}=0.166 \mathrm{~mm} \\
\Delta \mathrm{~L}_{\mathrm{s}}=\frac{28.011 \times 10^{3} \times 500}{400 \times 2.1 \times 10^{5}}=0.166 \mathrm{~mm}
\end{gathered}
$$

Result:

i) Stress developed in aluminium $\left(\sigma_{\mathrm{a}}\right)=36.64 \mathrm{~N} / \mathrm{mm}^{2}$

Stress developed in steel $\left(\sigma_{\mathrm{s}}\right)=70.02 \mathrm{~N} / \mathrm{mm}^{2}$
ii)Extension in each material $\quad \Delta_{\mathrm{L}}=0.166 \mathrm{~mm}$.
11. A steel rod of 25 mm diameter is enclosed centrally in a copper hollow tube of external diameter 40 mm and internal diameter 30 mm . The composite bar is then subjected to an axial pull of 4500 N . If the length of each bar is equal to 130 mm , determine
i) The stresses in the rod and tube
ii) Load carried by each bar.

Take $\mathrm{Eb}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{Ec}=1.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

GIVEN:

(i) Steel rod:

Diameter $=25 \mathrm{~mm}$
Area As $=\frac{\pi}{4}(25)^{2}=490.87 \mathrm{~mm}^{2}$.
ii) Copper hollow tube:

External diameter, $\mathrm{D}=40 \mathrm{~mm}$
Internal diameter, $\mathrm{d}=30 \mathrm{~mm}$

$$
\text { Area of copper tube }(\text { Hollow }), \mathrm{A}_{\mathrm{c}}=\frac{\pi}{4}\left(40^{2}-30^{2}\right)
$$

$$
\mathrm{A}_{\mathrm{c}}=549.7 \mathrm{~mm}^{2}
$$

Load, $\mathrm{p}=4500 \mathrm{~N} ; \quad$ Length, $\mathrm{L}=130 \mathrm{~mm}$.

To find:

i) Stress in steel rod and copper tube
ii) Load carried by rod and tube.

Solution:

We know that,
Total load, $\mathrm{P}=$ Load on steel rod + load on Copper tube.

$$
\begin{equation*}
4500=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{c}} \tag{1}
\end{equation*}
$$

Change in length of steel rod $=$ Change in length of copper tube.
$\Delta \mathrm{L}_{\mathrm{s}}=\Delta \mathrm{L}_{\mathrm{C}}$
$\frac{P_{s} L_{s}}{A_{s} E_{s}}=\frac{P_{c} L_{c}}{A_{c} E_{c}}$

Length of two rods of one equal,
So, $\quad L_{S}=L_{c}$
$\Rightarrow \quad \frac{\mathrm{P}_{\mathrm{s}} \times 130}{490.87 \times 2.1 \times 10^{5}}=\frac{\mathrm{P}_{\mathrm{c}} \times 130}{549.7 \times 1.1 \times 10^{5}}$

$$
\begin{aligned}
& P_{s}=\left(\frac{130}{2.15 \times 10^{-6}} \times \frac{103.08 \times 10^{6}}{130}\right) \mathrm{P}_{\mathrm{c}} \\
& \mathrm{P}_{\mathrm{c}}=1.70 \mathrm{P}_{\mathrm{c}} \\
\Rightarrow \quad & \mathrm{P}_{\mathrm{s}}=1.70 \times 16666.6 \\
& \mathrm{P}_{\mathrm{s}}=2833.22 \mathrm{~N}
\end{aligned}
$$

Stress in copper tube,

$$
\begin{aligned}
& \sigma_{\mathrm{c}}=\frac{\text { Load }}{\text { Area }} \\
& \sigma_{\mathrm{c}}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{~A}_{\mathrm{c}}}=\frac{1666.6}{549.7} \\
& \sigma_{\mathrm{c}}=3.03 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Stress in the steel rod,

$$
\begin{aligned}
& \sigma_{\mathrm{s}}=\frac{\text { Load }}{\text { Area }} \\
& \sigma_{\mathrm{s}}=\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{~A}_{\mathrm{s}}}=\frac{2833.22}{490.87} \\
& \sigma_{\mathrm{s}}=5.77 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Result:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{c}}=1666.6 \mathrm{~N} \\
& \mathrm{P}_{\mathrm{s}}=2833.22 \mathrm{~N} \\
& \sigma_{\mathrm{c}}=3.03 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{s}}=5.77 \mathrm{n} / \mathrm{mm}^{2}
\end{aligned}
$$

12. A steel rod of 20 mm diameter passes centrally through a copper tube of 50 mm . External diameter and 40 mm internal diameter. The tube is enclosed at each and by rigid plates of negative thickness. The nuts are tightened lightly home on the projecting pants of the rod. If the temperature of the assembly is raised by $50^{\circ} \mathrm{C}$, Calculated the stress developed in copper and steel. Take E for steel and copper as $200 \mathrm{G} \mathrm{N} / \mathrm{m}^{2}$ and $100 \mathrm{G} \mathrm{N} / \mathrm{m}^{2}$ and \propto for steel and copper 12×10^{-6} per ${ }^{\circ} \mathrm{C}$ and 18×10^{-6} per ${ }^{\circ} \mathrm{C}$.

Given:

Dia. Of steel rod $=20 \mathrm{~mm}$
Area of steel rod, $\mathrm{A}_{\mathrm{s}}=\frac{\pi}{4}(20)^{2}=314.16 \mathrm{~mm}^{2}$

Area of copper tube, $\mathrm{A}_{\mathrm{c}}=\frac{\pi}{4}\left(50^{2}-40^{2}\right)=706.86 \mathrm{~mm}^{2}$
Rise of temperature, $\mathrm{T}=50^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{s}}=200 \mathrm{GN} / \mathrm{m}^{3}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{E}_{\mathrm{c}}=100 \mathrm{GN} / \mathrm{m}^{3}=100 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\
& \alpha \text { for steel, } \alpha_{\mathrm{s}}=12 \times 10^{-6} \text { per }^{\circ} \mathrm{C}
\end{aligned}
$$

Let, $\quad \sigma_{\mathrm{s}}=$ tensile stress in steel

$$
\sigma_{\mathrm{c}}=\text { Compressive stress in copper }
$$

For the equilibrium of the system,
Tensile load on steel = compressive load on copper.

$$
\begin{align*}
& \sigma_{\mathrm{S}} \mathrm{~A}_{\mathrm{s}}=\sigma_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}} \\
& \sigma_{\mathrm{s}}=\frac{\mathrm{A}_{\mathrm{c}}}{\mathrm{~A}_{\mathrm{s}}} \cdot \sigma_{\mathrm{c}} \\
& \sigma_{\mathrm{s}}=\frac{708.54}{314.16} \times \sigma_{\mathrm{c}} \\
& \sigma_{\mathrm{s}}=2.25 \sigma_{\mathrm{c}} \ldots \ldots . . . \tag{i}
\end{align*}
$$

We know that the copper tube and steel rod will actually expand by the same amount.

Actual expansion of steel $=$ Actual expansion of copper.
But actual expansion of steel $=$ Free expansion of steel + Expansion due to tensile stress in copper

$$
=\mathrm{d}_{\mathrm{s}} \cdot \mathrm{~T} \cdot \mathrm{~L}+\frac{\sigma_{\mathrm{s}}}{\mathrm{E}_{\mathrm{s}}} \cdot \mathrm{~L}
$$

Actual expansion of copper $=$ Free expansion copper - contraction due to compressive stress in copper

$$
=\alpha_{\mathrm{c}} \cdot \text { T.L. }-\frac{\sigma_{\mathrm{c}}}{\mathrm{E}_{\mathrm{c}}} \cdot \mathrm{~L}
$$

Substituting in eqn (ii) we get

$$
\begin{gathered}
12 \times 10^{-6} \times 50+\frac{2.25 \sigma_{c}}{200 \times 10^{8}}=18 \times 10^{-6} \times 50-\frac{\sigma_{c}}{100 \times 10^{3}} \\
\frac{2.25 \sigma_{c}}{200 \times 10^{8}}+\frac{\sigma_{c}}{100 \times 10^{3}}=\left(18 \times 10^{-6} \times 50\right)-\left(12 \times 10^{-6} \times 50\right) \\
1.125 \times 10^{-5} \sigma_{c}+10^{-5} \sigma_{c}=6 \times 10^{-6} \times 50 \\
2.125 \times 10^{-5} \sigma_{c}=30 \times 10^{-5} \\
2.125 \sigma_{c}=30 \\
\sigma_{c}=\frac{30}{2.125}=14.117 \mathrm{~N} / \mathrm{mm}^{2}
\end{gathered}
$$

Substituting σ_{c} value in eqn (1)

$$
\begin{aligned}
& \sigma_{\mathrm{s}}=2.25 \sigma_{\mathrm{c}} \\
& \sigma_{\mathrm{s}}=14.117 \times 2.25 \\
& \sigma_{\mathrm{s}}=31.76 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Result:

$$
\begin{aligned}
& \sigma_{\mathrm{c}}=14.117 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{s}}=31.76 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

i) Volumetric strain of a rectangular bar subjected to an axial force (P)

$$
\begin{aligned}
& \mathrm{ev}=\frac{\mathrm{du}}{\mathrm{v}} \\
& \mathrm{ev}=\frac{\Delta \mathrm{L}}{\mathrm{~L}}\left(1-\frac{2}{\mathrm{~m}}\right)
\end{aligned}
$$

ii) Volumetric strain of a cylindrical rod subjected to an axial force (P)

$$
\begin{aligned}
& \mathrm{ev}=\frac{\mathrm{dv}}{\mathrm{v}} \\
& \mathrm{ev}=\frac{\Delta \mathrm{L}}{\mathrm{~L}}-\frac{2 \Delta \alpha}{\alpha}
\end{aligned}
$$

iii) Volumetric strain of rectangular bar subjected to three forces which are mutually perpendicular

$$
\begin{aligned}
& \mathrm{ev}=\frac{\mathrm{dv}}{\mathrm{v}} \\
& \mathrm{ev}=\frac{1}{\mathrm{E}}\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}+\sigma_{z}\right)\left(1-\frac{2}{\mathrm{~m}}\right)
\end{aligned}
$$

13. A steel rod 5 m long and 30 mm in diameter is subjected to an axial tensile load of 50 KM . Determine the change in length diameter and volume of the rod. Take $E=2 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and poison's ratio $=0.25$

Given:

$$
\begin{aligned}
& \quad \ell=5 \mathrm{~m}=5000 \mathrm{~mm} ; \mathrm{d}=30 \mathrm{~mm} \\
& \mathrm{E}=2 \times 10^{3} \mathrm{n} / \mathrm{mm}^{2} ; \mathrm{P}=50 \mathrm{KM} \\
& \mathrm{v}=\frac{\pi}{4}(\mathrm{~d})^{2} \times \ell=\frac{\pi}{4}(30)^{2} \times 5000=35.34 \times 10^{5} \mathrm{~mm}^{3} \\
& 1 / \mathrm{m}=0.25
\end{aligned}
$$

Required:

Change in length, $\Delta \ell=$?
Change in diameter $\Delta \mathrm{d}=$?
Change in Volume, $\Delta \mathrm{v}=$?

Solution:

We know, longitudinal strain $=\frac{\Delta \ell}{\ell}$
But, longitudinal strain $=$

$$
\begin{aligned}
& =\frac{\text { Stress }}{\text { Young's Modulus }}=\frac{\sigma}{\mathrm{E}} \\
& =\frac{\mathrm{P}}{\mathrm{AE}}=\frac{50 \times 10^{3}}{141.37 \times 10^{6}}
\end{aligned}
$$

$$
\mathrm{e}_{\ell}=0.000354
$$

$$
\therefore \Delta \ell=\mathrm{e}_{\ell} \times \ell=0.000354 \times 5000
$$

$$
\Delta \ell=1.768 \mathrm{~mm}
$$

Lateral strain $=0.25 \times 0.00035=0.0000875 \%$
But, Lateral strain

$$
=\frac{\Delta \mathrm{d}}{\mathrm{~d}}
$$

Change in diameter, $\Delta \mathrm{d}=$ Lateral strain \times Original diameter

$$
=0.0000875 \times 30
$$

$$
\Delta \mathrm{d}=0.0026 \mathrm{~mm}
$$

We know, Volumetric strain of cylindrical rod,

$$
\begin{aligned}
& \frac{\Delta \mathrm{v}}{\mathrm{v}}=\frac{\Delta \mathrm{L}}{\mathrm{~L}}=\frac{2 \Delta \mathrm{~d}}{\mathrm{~d}} \\
& \frac{\Delta \mathrm{v}}{\mathrm{v}}=\frac{\Delta \ell}{\ell}-\frac{2 \Delta \mathrm{~d}}{\mathrm{~d}} \\
& =0.000354-2 \times 0.000008758 \\
& \frac{\Delta \mathrm{v}}{\mathrm{v}}=0.000178 \\
& \therefore \Delta \mathrm{v}=0.000178 \times 35.34 \times 10^{3} \\
& \Delta \mathrm{v}=631.17 \mathrm{~mm}^{2}
\end{aligned}
$$

Result:

Change in length, $\Delta \ell=1.768 \mathrm{~mm}$
Change in diameter, $\Delta \mathrm{d}=0.0026 \mathrm{~mm}$
Change in Volume, $\Delta \mathrm{v}=631.17 \mathrm{~mm}^{3}$.
14. A cylindrical shell 3 meters long which is closed as the ends has an internal diameter of 1 m and a wall thickness of 15 mm . Calculate the circumferential and longitudinal stresses induced and also changes in the dimensions of the shell, if it is subjected to an internal pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0.3$.
Sol Given:

Length of shell,
Internal diameter,
Wall thickness,
Internal pressure,
Young's modulus, $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \backslash$

Poisson's ratio,
$\boldsymbol{\mu}=0.3$

Let $\quad \sigma_{1}=$ Circumferential (or Hoop) stress, and
$\sigma_{2}=$ Longitudinal stress.
Using equation (17.1) for hoop stress,

$$
\begin{aligned}
\sigma_{1} & =\frac{\mathrm{pd}}{2 \mathrm{t}} \\
& =\frac{1.5 \times 100}{2 \times 1.5}=50 \mathrm{~N} / \mathrm{mm}^{2} . \mathrm{Ans}
\end{aligned}
$$

Using equation (17.2) for longitudinal stress,

$$
\begin{aligned}
\sigma_{2} & =\frac{\mathrm{p} \times \mathrm{d}}{4 \mathrm{t}} \\
& =\frac{1.5 \times 100}{4 \times 1.5}=25 \mathrm{~N} / \mathrm{mm}^{2} . \mathrm{Ans}
\end{aligned}
$$

Change in dimensions
Using equation (17.11) for the change in diameter $(\delta \mathrm{d})$,

$$
\delta \mathrm{d}=\frac{\mathrm{pd}^{2}}{2 \mathrm{tE}}\left(1-\frac{1}{2} \times \mu\right)
$$

15. A flat steel plate of trapezoidal form of uniform thickness of $\mathbf{2 0 m m}$ tapers uniformly from a width of 100 mm to 200 mm in a length of 800 mm . If the axial tensile force of 100 kN is applied at each end, find the elongation of the plate. (Nov/Dec 2014)
Given:
Length $\quad \mathrm{L}=800 \mathrm{~mm}$
Thickness $\quad t=20 \mathrm{~mm}$
Axial load $\quad \mathrm{P}=100 \mathrm{kN}$
Width at bigger end $\quad a=200 \mathrm{~mm}$
Width at smaller end $\quad b=100 \mathrm{~mm}$
Let
$\mathrm{dL}=$ Extension of the plate.

$$
\mathrm{dL}=\frac{\mathrm{PL}}{\mathrm{Et}(\mathrm{a}-\mathrm{b})} \log _{\mathrm{e}} \frac{\mathrm{a}}{\mathrm{~b}}
$$

16. A steel bar 300 mm long, 40 mm wide and 25 mm thick is subjected to a pull of 180 kN . Determine the change is volume of the bar. Take $\mathrm{E}=\mathbf{2} \times \mathbf{1 0}^{\mathbf{5}} \mathrm{N} / \mathrm{mm}^{2}$ and $\mathbf{1} / \mathbf{m}=\mathbf{0 . 3}$
Given: Length, $\mathrm{L}=300 \mathrm{~mm} ; \quad$ width, $\mathrm{b}=40 \mathrm{~mm}$
Thickness, $\mathrm{t}=25 \mathrm{~mm} ; \quad$ Pull, $\mathrm{P}=180 \mathrm{kN}=180 \times 10^{3} \mathrm{~N}$
Young's modulus, $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
Poisson's ratio, $1 / \mathrm{m}=0.3$
To find : Change in volume.
Solution : Volumetric strain of a rectangular bar subjected to an axial force is given by,

$$
\begin{equation*}
\mathrm{e}_{\mathrm{v}}=\frac{\mathrm{dV}}{\mathrm{~V}}=\frac{\delta \mathrm{L}}{\mathrm{~L}}\left(1-\frac{2}{\mathrm{~m}}\right) \tag{A}
\end{equation*}
$$

[Fromequation(1.32)]
Young's Modulus, $\mathrm{E}=\frac{\text { Tensile Stress }}{\text { Tensile strain or Longitudinal strain }}$
$\mathrm{E}=\frac{\sigma}{\mathrm{e}_{1}}$
$\mathrm{E}=\frac{\mathrm{P} / \mathrm{A}}{\delta \mathrm{L} / \mathrm{L}}$
$\left[\because\right.$ Stress, $\sigma=\frac{\text { Load }}{\text { Area }}=\frac{\mathrm{P}}{\mathrm{A}} ; \quad$ Longitudinal Strain, $\left.\mathrm{e}_{1}=\frac{\delta \mathrm{L}}{\mathrm{L}}\right]$
$\Rightarrow \quad 2 \times 10^{5}=\frac{180 \times 10^{3} / \mathrm{b} \times \mathrm{t}}{\delta \mathrm{L} / 300}$

$$
=\frac{\frac{180 \times 10^{3}}{40 \times 25}}{\frac{\delta \mathrm{~L}}{300}}
$$

$$
\delta \mathrm{L}=0.27 \mathrm{~mm}
$$

Substituting $\delta \mathrm{L}, \mathrm{L}, 1 / \mathrm{m}$ values in equation (A),

$$
\begin{aligned}
& \frac{\mathrm{dV}}{\mathrm{~V}}=\frac{0.27}{300}[1-2(0.3)] \\
&(\mathrm{A}) \Rightarrow \frac{\mathrm{dV}}{\mathrm{~V}}=3.6 \times 10^{-4} \\
& \text { Volume, } \mathrm{V}=\mathrm{L} \times \mathrm{b} \times \mathrm{t}=300 \times 40 \times 25
\end{aligned}
$$

$$
\mathrm{V}=3 \times 10^{5} \mathrm{~mm}^{3}
$$

Substituting V value in equation (B),

$$
\begin{aligned}
(B) \Rightarrow & \frac{d V}{3 \times 10^{5}}=3.6 \times 10^{-4} \\
& d V=108 \mathrm{~mm}^{3}
\end{aligned}
$$

Result : Change in Volume, $\mathrm{dV}=108 \mathrm{~mm}^{3}$.
17. An cylindrical shell 1 m diameter and 3 m length is subjected to an internal pressure of 2 MPa . Calculate the minimum thickness if the stress should not exceed 50 MPa . Find the change in diameter and volume of the shell. Poisson's radio $=0.3$ and $E=200 \mathrm{kN} / \mathrm{mm}^{2}$.
[MU - Apr 96]

Given:

Diameter of cylinder, $d=1 \mathrm{~m}=1000 \mathrm{~mm}$
Length of cylinder, $L=3 \mathrm{~mm}=3000 \mathrm{~mm}$
Internal Pressure, $\mathrm{P}=2 \mathrm{MPa}=2 \mathrm{~N} / \mathrm{mm}^{2}$
Young's modulus, $\mathrm{E}=200 \mathrm{k} \mathrm{N} / \mathrm{mm}^{2}$

$$
=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
$$

Poisson's ratio, $1 / \mathrm{m}=0.3$.

Solution:

Circumferential stress, $\sigma_{\mathrm{c}}=\frac{\mathrm{pd}}{2 \mathrm{t}}$
$[$ From equation (1.47)]
$50=\frac{2 \times 1000}{2 \times t}$
$\mathrm{t}=20 \mathrm{~mm}$
Change in diameter,

$$
\begin{gathered}
\delta \mathrm{d}=\frac{\mathrm{pd}^{2}}{2 \mathrm{t} \mathrm{E}}\left(1-\frac{1}{2 \mathrm{~m}}\right) \\
\quad[\text { From equation }(1.50)] \\
=\frac{2 \times(1000)^{2}}{2 \times 20 \times 2 \times 10^{5}}\left(1-\frac{1}{2} \times 0.3\right) \\
\delta \mathrm{d}=0.2125 \mathrm{~mm}
\end{gathered}
$$

Change in volume,

$$
\delta \mathrm{v}=\frac{\mathrm{pdv}}{2 \mathrm{tE}}\left(\frac{5}{2}-\frac{2}{\mathrm{~m}}\right)
$$

[From equation (1.54)]
Volume in cylinder,

$$
\begin{aligned}
\mathrm{v} & =\frac{\pi}{4} \mathrm{~d}^{2} \times 1 \\
& =\frac{\pi}{4}(1000)^{2} \times 3000 \\
\mathrm{v} & =2.3562 \times 10^{9} \mathrm{~mm}^{3} \\
\delta \mathrm{v} & =\frac{2 \times 1000 \times 2.3562 \times 10^{9}}{2 \times 20 \times 2 \times 10^{5}}(2.5-2 \times 0.3) \\
\delta \mathrm{v} & =1119195 \mathrm{~mm}^{3}
\end{aligned}
$$

Results:

Thickness of cylinder, $\mathrm{t}=20 \mathrm{~mm}$
Change in diameter, $\delta \mathrm{d}=0.2125 \mathrm{~mm}$
Change in volume, $\delta \mathrm{v}=1119195 \mathrm{~mm}^{3}$
18. Derive the relationship between bulk modulus Young's modulus EXPRESSION FOR YOUNG'S MODULUS IN TERMS OF BULK MODULUS

Fig. 2.7 shows a cube A B C D E F G H which is subjected to three mutually perpendicular tensile stresses of equal intensity.

Let $L=$ Length of cube
$\mathrm{dL}=$ Change in length of the cube.
$\mathrm{E}=$ Young's modulus of the material of the cube
$\sigma=$ Tensile stress acting on the faces
$\mu=$ Poissons ratio.

Fig. 2.7
Then volume of cube, $\mathrm{V}=\mathrm{L}^{3}$
Now let us consider the strain of one of the sides of the cube (say AB) under the action of the three mutually perpendicular stresses. This side will suffer the following three strains:

1. Strain of $A B$ due to stresses on the faces AEHD and RFGC. This strain is tensile and is equal to $\frac{\sigma}{\mathrm{E}}$.
2. Strain of AB due to stresses on the faces. AEFB and DHGC. This is compressive lateral strain and is equal to $-\mu \frac{\sigma}{E}$.
3. Strain of $A B$ due to stresses on the faces $A B C D$ and EFGH. This is also compressive lateral strain and is equal to $-\mu \frac{\sigma}{\mathrm{E}}$. Hence the total strain of AB is given by

$$
\begin{equation*}
\frac{\mathrm{dL}}{\mathrm{~L}}=\frac{\sigma}{\mathrm{E}}-\mu \times \frac{\sigma}{\mathrm{E}}=\frac{\sigma}{\mathrm{E}}(1-2 \mu) \tag{i}
\end{equation*}
$$

Now original volume of cube, $\mathrm{V}=\mathrm{L}^{3}$
If dL is the change in length, then dV is the change in volume.
Differentiating equation (ii), with respect to L ,

$$
\begin{equation*}
\mathrm{dV}=3 \mathrm{~L}^{2} \times \mathrm{dL} \tag{iii}
\end{equation*}
$$

Dividing equation (iii) by equation (ii), we get

$$
\frac{\mathrm{dV}}{\mathrm{~V}}=\frac{3 \mathrm{~L}^{2} \times \mathrm{dL}}{\mathrm{~L}^{3}}=\frac{3 \mathrm{dL}}{\mathrm{~L}}
$$

Substituting the value of $\frac{\mathrm{dL}}{\mathrm{L}}$ from equation (i) in the above equation, we get

$$
\frac{\mathrm{dV}}{\mathrm{~V}}=\frac{3 \sigma}{\mathrm{E}}(1-2 \mu)
$$

From equation (2.9), bulk modulus is given by

$$
\begin{aligned}
& \mathrm{K}=\frac{\sigma}{\left(\frac{\mathrm{dV}}{\mathrm{~V}}\right)}=\frac{\sigma}{\frac{3 \sigma}{\mathrm{E}}(1-2 \mu)} \quad\left[\because \frac{\mathrm{dV}}{\mathrm{~V}}=\frac{3 \sigma}{\mathrm{E}}(1-2 \mu)\right] \\
&=\frac{\mathrm{E}}{3(1-2 \mu)} \\
& \text { Or } \quad \mathrm{E}=3 \mathrm{~K}(1-2 \mu)
\end{aligned}
$$

From equation (2.11) the expression for Poisson's ratio (μ) is obtained as

$$
\mu=\frac{3 \mathrm{~K}-\mathrm{E}}{6 \mathrm{~K}}
$$

19. A Hollow cast iron cylinder 4 m long, 300 mm outer diameter and thickness of metal 50 mm is subjected to a central load on the top when standing straight. The stress produced is $75000 \mathrm{kN} / \mathrm{mm}^{2}$, assume Young's modulus for cast iron as $1.5 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$ and find (I) magnitude of the load (ii) longitudinal strain (iii) total decrease in length.
(Nov/Dec 2014)

Given Data:

Length $(\ell)=4 \mathrm{~m}=4000 \mathrm{~mm}$
Outed dia $(D)=300 \mathrm{~mm}$
thickness $(\mathrm{t})=50 \mathrm{~mm}$
Stress $(\sigma)=75000 \mathrm{kN} / \mathrm{m}^{2}=75 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=1.5 \times 10^{8} \mathrm{KN} / \mathrm{m}^{2}=15000 \mathrm{~N} / \mathrm{mm}^{2}$
To find:
(i) load
(ii) Longitudinal stream
(iii) Total decrease inb length

Solution:

(i) Load (P)
W.K.T

$$
\operatorname{Stress}(\sigma)=\mathrm{P} / \mathrm{A}
$$

$$
\mathrm{A}=\frac{\pi}{4}\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)
$$

$$
\mathrm{A}=\frac{\pi}{4}\left(300^{2}-200^{2}\right)
$$

$$
\mathrm{A}=39.26 \times 10^{3} \mathrm{~mm}^{2}
$$

$D=300 \mathrm{~mm}$
$\operatorname{Load}(p)=\operatorname{Stress}(\sigma) \times \operatorname{Area}(A)$
$P=75000 \times 39.26 \times 10^{3}$
(or)
$\mathrm{P}=75 \times 39.26 \times 10^{3}=2.94 \times 10^{6} \mathrm{~N}$
$\mathrm{P}=2945 \mathrm{KN}$
(ii) Strain $\left(\mathrm{C}_{\ell}\right)$

$$
\begin{gathered}
\mathrm{E}=\frac{\sigma}{\mathrm{c}_{\ell}} \Rightarrow \mathrm{e}_{\ell}=\frac{\sigma}{\mathrm{E}}=\frac{75}{11.5 \times 10^{5}} \\
\mathrm{e}_{\ell}=5 \times 10^{-4}
\end{gathered}
$$

(iii) Decrease in length $(\delta \ell)$

$$
\delta \ell=\frac{\mathrm{P} \ell}{\mathrm{AE}}=2 \mathrm{~mm}
$$

20. A composite bar is made with a copper flat of size 50 mmx 30 mm and a steel flat of 50 mmx 40 mm of length 500 mm each placed one over the other. Find the stress induced in the material when the composite bar is subjected to an increase in temperature of $90^{\circ} \mathrm{C}$. Take the coefficient of thermal expansion of steel as $12 \times 10^{\wedge}-6 /{ }^{\circ} \mathrm{C}$ and that of copper as $18 \times 10^{\wedge}-6 /{ }^{\circ} \mathrm{C}$, $\mathrm{Es}=200 \mathrm{Gpa}$ and $\mathrm{Ec}=100 \mathrm{Gpa}$.

Given data:

Temperature $(\mathrm{T})=90^{\circ} \mathrm{C}$

Size of copper flat $=50 \mathrm{~mm} \times 30 \mathrm{~mm}$
Size of steel flat $=50 \mathrm{~mm} \times 40 \mathrm{~mm}$
Length $(\ell)=500 \mathrm{~mm}$
Increase in Temperature $=90^{\circ} \mathrm{C}$
Coefficient of thermal expansion
$\left(\alpha_{s}\right)$ steel $=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\left(\alpha_{c}\right)$ copper $=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{c}}=100 \mathrm{GPa}=100 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{A}_{\mathrm{c}}=50 \times 50=1500 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{s}}=50 \times 40=2000 \mathrm{~mm}^{2}$

Solution:

Compressive load on copper $=$ Tensile load on steel

$$
\begin{aligned}
& \sigma_{c} A_{c}=\sigma_{s} A_{s} \\
& \sigma_{c}=\frac{\sigma_{s}}{A_{c}} A_{s}=\sigma_{s} \cdot \frac{A_{s}}{A_{c}}=\frac{2000}{1500} \sigma_{s} \\
& \sigma_{c}=1.33 \sigma_{s}
\end{aligned}
$$

Expansion of steel = Expansion of copper

$$
\begin{aligned}
& \alpha_{s} \mathrm{TL}+\frac{\sigma_{s}}{\mathrm{E}_{s}} \cdot \mathrm{~L}=\alpha_{c} \mathrm{~T} \cdot \mathrm{~L}-\frac{\sigma_{c}}{\mathrm{E}_{\mathrm{c}}} \mathrm{~L} \\
& \alpha_{\mathrm{s}} \mathrm{~T}+\frac{\sigma_{s}}{\mathrm{E}_{\mathrm{s}}}=\alpha_{\mathrm{c}} \mathrm{~T}-\frac{\sigma_{\mathrm{c}}}{\mathrm{E}_{\mathrm{c}}} \\
& 12 \times 10^{-6} \times 90+\frac{\sigma_{s}}{\left(200 \times 10^{3}\right)}=\left(18 \times 10^{-6} \times 90\right)-\frac{1.33 \sigma_{\mathrm{s}}}{\left(100 \times 10^{3}\right)} \\
& 1.08 \times 10^{-3}+5 \times 10^{-6} \sigma_{\mathrm{s}}=1.62 \times 10^{-3}-1.33 \times 10^{-5} \sigma_{\mathrm{s}} \\
& 5 \times 10^{-6} \sigma_{\mathrm{s}}+1.33 \times 10^{-5} \sigma_{\mathrm{s}}=1.62 \times 10^{-3}-1.08 \times 10^{-3} \\
& 1.83 \times 10^{-5} \sigma_{\mathrm{s}}=5.4 \times 10^{-4} \\
& \quad \sigma_{\mathrm{s}}=29.51 \mathrm{~N} / \mathrm{mm}^{2} \\
& \quad \sigma_{\mathrm{c}}=39.24 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

21. A thin cylindrical shell 2 m long has 800 mm internal diameter and 10 mm thickness, if the shell is subjected to an internal pressure of 1.5Мра,
I)find the hoop and longitudinal stresses developed
ii) maximum shear stress induced
iii) the change in diameter, length, volume take $E=205 \mathrm{Gpa}$ and Poisson's ratio as 0.3
(AU 2015)

Given data:

Length $(\ell)=2 \mathrm{~m}$
Internal dia $(d)=800 \mathrm{~mm}$
Thickness $(\mathrm{t})=10 \mathrm{~mm}$
Internal pressure $(\mathrm{p})=1.5 \mathrm{MPa}=1.5 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{E}=205 \mathrm{GPa}=205 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \mu=0.3$

Solution:

Hoop stress $\left(\sigma_{1}\right)=\frac{\mathrm{p} \ell}{2 \mathrm{t}}=\frac{1.5 \times 800}{(2 \times 10)}=60 \mathrm{~N} / \mathrm{mm}^{2}$
Longitudinal stress $\left(\sigma_{1}\right)=\frac{1}{2} \sigma_{1}=30 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum shear stress $\left(\tau_{\max }\right)=\frac{\sigma_{1}-\sigma_{2}}{2}$

$$
\tau_{\max }=\frac{\mathrm{pd}}{8 \mathrm{t}}=\frac{1.5 \times 800}{(8 \times 10)}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

Change in diameter $(\delta \mathrm{d})=\frac{\mathrm{pd}^{2}}{2 \mathrm{tE}}\left[1-\frac{\mu}{2}\right]$

$$
=\frac{1.5 \times 800^{2}}{\left(2 \times 10 \times 205 \times 10^{3}\right)}\left[1-\frac{0.3}{2}\right]
$$

$$
\delta \mathrm{d}=0.199 \mathrm{~mm}
$$

Change in length $(\delta \ell)=\frac{\mathrm{pd} \ell}{2 \mathrm{tE}}\left[\frac{1}{2}-\mu\right]$
$\delta \ell=0.117 \mathrm{~mm} \quad\left(\mathrm{~V}=\frac{\pi \mathrm{d}^{2}}{4} \times \ell\right)$
Change in volume $(\delta \mathrm{v})=\mathrm{V}\left[\frac{2 \delta \mathrm{~d}}{\mathrm{~d}}+\frac{\delta \ell}{\ell}\right]$
$\delta \ell=6005 \times 10^{4}\left[5.56 \times 10^{-4}\right]$
$\delta \mathrm{V}=5.58 .78 \times 10^{3} \mathrm{~mm}^{3}$

