

PART	- A (5	$\mathbf{x} 2 =$	10 Ma	arks)

		CO	Blooms
1	Analyze the importance of Initial Torque in Heavy Vehicles	CO1	Ana
2	List out the various resistance offered to vehicle motion.	CO1	Rem
3	Define Gradability.	CO1	Rem
4	Analyze the various tire forces	CO2	Ana
5	Identify the modification that can be done in tire design to perform well in cornering	CO2	Ana

PART – B (40 Marks)

6	(a)	The coefficient of rolling resistance for a truck weighing 62293.5 N is 0.018 and the coefficient of air resistance is 0.0276 in the formula $R = KW + K_aAV^2$. The transmission efficiency in top gear of 6.2:1 is 90% and that in the second gear of 15:1 is 80%. The frontal area is 5.574m ² . If the truck has to have a maximum speed of 88 km/hr in top gear. Calculate (i)Engine Power Required (ii) The Engine speed if the driving wheel have an effective diameter of 0.8125 m, (iii) The maximum grade the truck can negotiate at the above engine speed in second gear, (iv) The maximum drawbar pull available on level at the above engine speed in second gear. (or)	13	CO1	Арр
	(b)	A car of weight 14224.5 N is fitted with an engine developing 31kW, the top gear ratio is 4.5:1 with an effective wheel diameter of 0.66 m and transmission efficiency of 88% at 2000 rpm. Rolling resistance equal to 14N/1000N and R_a =0.0775V ² Total Inertia of the car including that of engine transmission and road wheel may be assume equal to that of weight of 17805 N. Calculate (i) Forward speed at 2000 rpm, (ii) Power available for hill climbing at this speed, (iii) Maximum Acceleration at this speed.	13	CO1	Арр
7	(a)	Analyze the various forces and moments involved in tires with a neat sketch	13	CO2	Ana
		(or)			
	(b)	Examine the ride property of a tire in detail.	13	CO2	Ana

8.	(a)	Analyze the assum	ptions that no	eed to be ca	rried out w	while designir	ng a vehicle.	14	CO1	Ana
----	-----	-------------------	----------------	--------------	-------------	----------------	---------------	----	-----	-----

(or)

	(b)	Inspect the performance pa	rameters of tire on we	t surfaces in	detail.	14	CO2	Ana
--	-----	----------------------------	------------------------	---------------	---------	----	------------	-----