
Logic Agents and Propositional 
Logic



Model-based Agents
2

 Know how world evolves

 Overtaking car gets closer from 
behind

 How agents actions affect the 
world

 Wheel turned clockwise takes you 
right

 Model base agents update their 
state.

 Can also add goals and 
utility/performance measures.



Knowledge Representation Issues

 The Relevance Problem.

 The completeness problem.

 The Inference Problem.

 The Decision Problem.

 The Robustness problem.



Agent Architecture: Logical Agents

• Graph-Based Search: State is black box, no internal 

structure, atomic.

• Factored Representation: State is list or vector of facts.

• Facts are expressed in formal logic.

A model is a 

structured 

representation of 

the world.



Limitations of CSPs

 Constraint Satisfaction Graphs can represent much 
information about an agent’s domain.

 Inference can be a powerful addition to search (arc 
consistency). 

 Limitations of expressiveness:

 Difficult to specify complex constraints, arity > 2.

 Make explicit the form of constraints (<>, implies…).

 Limitations of Inference with Arc consistency: 

 Non-binary constraints.

 Inferences involving multiple variables. 



Logic: Motivation

 1st-order logic is highly expressive.

 Almost all of known mathematics.

 All information in relational databases.

 Can translate much natural language.

 Can reason about other agents, beliefs, intentions, desires…

 Logic has complete inference procedures.

 All valid inferences can be proven, in principle, by a machine.

 Cook’s fundamental theorem of NP-completeness states that all difficult search 
problems (scheduling, planning, CSP etc.) can be represented as logical 
inference problems. (U of T). 



Logic vs. Programming Languages

 Logic is declarative.

 Think of logic as a kind of language for 
expressing knowledge.
 Precise, computer readable.

 A proof system allows a computer to infer
consequences of known facts.

 Programming languages lack general 
mechanism for deriving facts from other 
facts. Traffic Rule Demo

http://www.youtube.com/watch?v=3NOS63-4hTQ


Logic and Ontologies

 Large collections of facts in logic are structured in 
hierarchices known as ontologies

 See chapter in textbook, we’re skipping it.

 Cyc: Large Ontology Example. 

 Cyc Ontology Hierarchy.

 Cyc Concepts Lookup

 E.g., games, Vancouver.

http://en.wikipedia.org/wiki/Cyc
http://cyc.com/cyc/technology/whatiscyc_dir/maptest
http://sw.opencyc.org/


1st-order Logic: Key ideas
9

 The fundamental question: What 
kinds of information do we need 
to represent? (Russell, Tarski). 

 The world/environment consists 
of

 Individuals/entities.

 Relationships/links among them.



Knowledge-Based Agents

 KB = knowledge base
 A set of sentences or facts
 e.g., a set of statements in a logic language

 Inference
 Deriving new sentences from old
 e.g., using a set of logical statements to infer new ones

 A simple model for reasoning
 Agent is told or perceives new evidence

 E.g., A is true

 Agent then infers new facts to add to the KB
 E.g., KB = { A -> (B OR C) }, then given A and not C we can infer that B is true
 B is now added to the KB even though it was not explicitly asserted, i.e., the 

agent inferred B



Wumpus World

 Environment

 Cave of 4×4

 Agent enters in [1,1]

 16 rooms

 Wumpus: A deadly beast who kills anyone 
entering his room. 

 Pits: Bottomless pits that will trap you 
forever. 

 Gold



Wumpus World

 Agents Sensors:
 Stench next to Wumpus

 Breeze next to pit

 Glitter in square with gold

 Bump when agent moves into a wall

 Scream from wumpus when killed

 Agents actions
 Agent can move forward, turn left or 

turn right

 Shoot, one shot



What is a logical language?

 A formal language
 KB = set of sentences

 Syntax 
 what sentences are legal (well-formed)
 E.g., arithmetic

 X+2 >= y is a wf sentence, +x2y is not a wf sentence

 Semantics  
 loose meaning: the interpretation of each sentence
 More precisely: 

 Defines the truth of each sentence wrt to each possible world
 e.g,    

 X+2 = y is true in a world where x=7 and y =9
 X+2 = y is false in a world where x=7 and y =1

 Note: standard logic – each sentence is T of F wrt eachworld
 Fuzzy logic – allows for degrees of truth.



Propositional logic: Syntax

 Propositional logic is the simplest logic – illustrates basic ideas

 Atomic sentences = single proposition symbols
 E.g., P, Q, R
 Special cases: True = always true, False = always false

 Complex sentences:  

 If S is a sentence, S is a sentence (negation)

 If S1 and S2 are sentences, S1  S2 is a sentence (conjunction)

 If S1 and S2 are sentences, S1  S2 is a sentence (disjunction)

 If S1 and S2 are sentences, S1  S2 is a sentence (implication)

 If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)



Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].
start:  P1,1

 B1,1

B2,1

 "Pits cause breezes in adjacent squares"
B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)

 KB can be expressed as the conjunction of all of these sentences

 Note that these sentences are rather long-winded!
 E.g., breeze “rule” must be stated explicitly for each square

 First-order logic will allow us to define more general patterns.



Propositional logic: Semantics

 A sentence is interpreted in terms of 
models, or possible worlds.

 These are formal structures that specify 
a truth value for each sentence in a 
consistent manner.

Ludwig Wittgenstein (1918):

1. The world is everything that is the case.
1.1   The world is the complete collection 

of facts, not of things.
1.11 The world is determined by the facts, 

and by being the complete collection of 
facts.



More on Possible Worlds

 m is a model of a sentence  if  is true in m

 M() is the set of all models of 

 Possible worlds ~ models
 Possible worlds: potentially real environments
 Models: mathematical abstractions that establish the truth or falsity of every sentence

 Example:
 x + y = 4, where x = #men, y = #women
 Possible models = all possible assignments of integers to x and y.

 For CSPs, possible model = complete assignment of values to variables.
 Wumpus Example Assignment style

wumpus-stench.xml


Propositional logic: Formal Semantics

Each model/world specifies true or false for each proposition symbol
E.g. P1,2 P2,2 P3,1

false true false
With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model m:
S is true iff S is false  

S1  S2 is true iff S1 is true and S2 is true

S1  S2 is true iff S1is true or S2 is true

S1  S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1  S2 is true iff S1S2 is true andS2S1 is true

Simple recursive process evaluates every sentence, e.g.,

P1,2  (P2,2 P3,1) = true  (true  false) =  true  true = true



Truth tables for connectives



Truth tables for connectives

Implication is always true
when the premise is false

Why? P=>Q means “if P is true then I am claiming that Q is true,
otherwise no claim”

Only way for this to be false is if P is true and Q is false

Evaluation Demo - Tarki's World

http://www.bu.edu/linguistics/UG/course/lx502-s04/local/tarski.html


Wumpus models

 KB = all possible wumpus-worlds consistent 
with the observations and the “physics” of the 
Wumpus world.



Listing of possible worlds for the Wumpus KB

α1 = ”square [1,2] is safe”. 
KB = detect nothing in [1,1], detect breeze in [2,1]



Entailment

 One sentence follows logically from another

 |= b

 entails sentence  b if and only if b is true in all 
worlds where  is true.

e.g., x+y=4  |= 4=x+y

 Entailment is a relationship between sentences that 
is based on semantics.



Schematic perspective

If KB is true in the real world, then any sentence  derived

from KB by a sound inference procedure is also true in the 

real world.



Entailment in the wumpus world

 Consider possible models for KB assuming only pits and a reduced Wumpus 
world

 Situation after detecting nothing in [1,1], moving right, detecting breeze in 
[2,1]



Wumpus models

All possible models in this reduced Wumpus world.



Inferring conclusions

 Consider 2 possible conclusions given a KB
 α1 = "[1,2] is safe"
 α2 = "[2,2] is safe“

 One possible inference procedure
 Start with KB
 Model-checking

 Check if KB ╞  by checking if in all possible models where KB is 
true that  is also true   

 Comments:
 Model-checking enumerates all possible worlds

 Only works on finite domains, will suffer from exponential growth 
of possible models



Wumpus models

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking



Wumpus models

α2 = "[2,2] is safe", KB ╞ α2

 There are some models entailed by KB where 2 is 
false.

 Wumpus Example Assignment style

wumpus-stench.xml


Logical inference

 The notion of entailment can be used for  inference.
 Model checking (see wumpus example): enumerate all possible 

models and check whether  is true.

 If an algorithm only derives entailed sentences it is called 
sound or truth preserving.

 A proof system is sound if whenever the system 
derives  from KB, it is also true that KB|= 
 E.g., model-checking is sound

 Completeness : the algorithm can derive any sentence 
that is entailed.

 A proof system is complete if whenever KB|= , 
the system derives  from KB.



Inference by enumeration

 We want to see if  is entailed by KB 

 Enumeration of all models is sound and complete.

 But…for n symbols, time complexity is O(2n)...

 We need a more efficient way to do inference
 But worst-case complexity will remain exponential for 

propositional logic



Logical equivalence

 To manipulate logical sentences we need some rewrite rules.

 Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α╞ β and 
β╞ α



Exercises

 Show that P implies Q 
is logically equivalent to (not P) or Q.  
That is, one of these formulas is true in a model just 
in case the other is true.

 A literal is a formula of the form P or of the form 
not P, where P is an atomic formula. Show that the 
formula (P or Q) and (not R) has an equivalent 
formula that is a disjunction of a conjunction of 
literals. Thus the equivalent formula looks like this:
[literal 1 and literal 2 and ….] or [literal 3 and …]



Propositional Logic vs. CSPs

 CSPs (Constraint 
Satisfaction Problem) are 
a special case as follows.

 The atomic formulas are 
of the type
Variable = value.

 E.g., (WA = green).

 Negative constraints 
correspond to negated 
conjunctions.

 E.g. not (WA = green 
and NT = green).

Exercise: Show that every (binary) 

CSP is equivalent to a conjunction 

of literal disjunctions of the form

[variable 1 = value 1 or variable 1 

= value 2 or variable 2 = value 2 or 

….] and […]



Normal Clausal Form

We first rewrite                  into conjunctive normal form (CNF).

Eventually we 
want to prove:

A “conjunction of disjunctions”

(A  B)  (B  C  D)

ClauseClause

literals

• Theorem: Any KB can be converted into an equivalent CNF.
• k-CNF: exactly k literals per clause

Knowledge base KB entails sentence α 



Example: Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).
(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2.   Eliminate , replacing α  β with α β.
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3.   Move  inwards using de Morgan's rules and double-negation:
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4.   Apply distributive law ( over ) and flatten:
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)



Horn Clauses

Horn Clause = A clause with at most 1 positive literal.
e.g. 

• Every Horn clause can be rewritten as an implication with
a conjunction of positive literals in the premises and at most a single
positive literal as a conclusion.

e.g.

• 1 positive literal: definite clause

• 0 positive literals: Fact or integrity constraint:
e.g.

• Psychologically natural: a condition implies (causes) a single fact.

• The basis of logic programming (the prolog language).  
SWI Prolog. Prolog and the Semantic Web. Prolog Applications

A B C   

B C A 

( ) ( )A B A B False    

http://www.swi-prolog.org/
http://www.amzi.com/articles/youbet.htm
http://drdobbs.com/high-performance-computing/184405220


Summary

 Logical agents apply inference to a knowledge base to 
derive new information and make decisions

 Basic concepts of logic:
 syntax: formal structure of sentences
 semantics: truth of sentences wrt models
 entailment: necessary truth of one sentence given another
 inference: deriving sentences from other sentences
 soundness: derivations produce only entailed sentences
 completeness: derivations can produce all entailed 

sentences.

 The Logic Machine in Isaac Asimov’s Foundation Series.
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