- Constraint satisfaction problems (CSPs)

CSP:

state is defined by variables X; with values from domain D,

goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

Allows useful general-purpose algorithms with more power
than standard search algorithms

W Example: Map-Coloring

Northern
Territory

Weastarn
Australia

Quesnsland

South —
Australia

New South Wales

Tasmania

Variables WA, NT, Q, NSW, \ SA, T
Domains D; = {red,green,blue}

Constraints: adjacent regions must have different colors
e.g., WA = NT

W Example: Map-Coloring

=
=

T

\gu

Tasm"a

Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red,NSW =
green,V = red,SA = blue, T = green

M Constraint graph

Binary CSP: each constraint relates two variables
Constraint graph: nodes are variables, arcs are constraints

Northern @
Territory
Wests Queensland
Austral
South —
Australia
New South Wales

Victoria

O

B Varieties of CSPs

Discrete variables

finite domains:
n variables, domain size d = O(d ") complete assignments
e.g., 3-SAT (NP-complete)

infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job:
Startiob, + 5 < Startjob,

Continuous variables
e.g., start/end times for Hubble Space Telescope observations
linear constraints solvable in polynomial time by linear programming

M Varieties of constraints

Jnary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,
e.g., SA # WA

Higher-order constraints involve 3 or more
variables,
e.g., SA # WA # NT

M Example: Cryptarithmetic

T WO FY(T) (u A) (O
+ T WO
¥ Y
Variables: FTUWR O X; X5 X
Domains: {0,1,2,3,4,5,6,7,8,9; {0,1}

Constraints: Alldiff (ET U, WR,0)
O+0=R+ 10 X,
X, +W+W=U+10- X,
X,+T+T=0+10- X;
X;=FT#0,F+0

B Real-world CSPs

Assignment problems

e.d., who teaches what class
Timetabling problems

e.g., which class is offered when and where?
Transportation scheduling

Factory scheduling

Notice that many real-world problems involve real-
valued variables

- Standard search formulation

O—@
oWy
Let's try the standard search formulation. @‘o@
We need: @

e Initial state: none of the variables has a value (color)
e Successor state: one of the variables without a value will get some value.
e Goal: all variables have a value and none of the constraints is violated.

N layers NxD

[NxD]X[(N-1)xD]
WA WA WA NT

NT NT NT \/WA

Equal! NI X DAN

v

There are N! x DN nodes in the tree but only DN distinct states??

M Backtracking (Depth-First) search

e Special property of CSPs: They are commutative: NT WA
This means: the order in which we assign variables =
WA NT
does not matter.

e Better search tree: First order variables, then assign them values one-by-one.

()
<1
N,
D ()
@
DA2
DAN

10

M Backtracking example
$<

11

M Backtracking example

M Backtracking example

M Backtracking example

14

B Improving backtracking efficiency

General-purpose methods can give huge
gains in speed:
Which variable should be assigned next?
In what order should its values be tried?
Can we detect inevitable failure early?

We'll discuss heuristics for all these questions in
the following.

15

Which variable should be assigned next?
| > minimum remaining values heuristic

Most constrained variable:
choose the variable with the fewest legal values

SOER Sopn ~eey

a.k.a. minimum remaining values (MRV)
heuristic

Picks a variable which will cause failure as
soon as possible, allowing the tree to be
pruned.

16

Which variable should be assigned next?
N > degree heuristic

Tie-breaker among most constrained

variables oo
@‘@'éo@

Most constrain/ng variable: ©

choose the variable with the most constraints on
remaining variables (most edges in graph)

L Rt

17

In what order should its values be tried?
- - least constraining value heuristic

Given a variable, choose the least (==
constraining value:

the one that rules out the fewest values in the ™
remaining variables

Allows 1 value for SA

"
<o, s

Leaves maximal flexibility for a solution.

Combining these heuristics makes 1000
queens feasible 18

M Rationale for MRV, DH, LCV

In all cases we want to enter the most promising branch,
but we also want to detect inevitable failure as soon as
possible.

MRV+DH: the variable that is most likely to cause failure in
a branch is assigned first. E.g X1-X2-X3, values is 0,1,
neighbors cannot be the same.

LCV: tries to avoid failure by assigning values that leave
maximal flexibility for the remaining variables.

19

Can we detect inevitable failure early?
- - forward checking

Idea:

Keep track of remaining legal values for unassigned variables
that are connected to current variable.
Terminate search when any variable has no legal values

S|

()
cQ Wy
@‘@
WA NT Q NSW v SA T o
ENEENEENEIESEIEEIET EIE"DH

@

20

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

e S

QP

WA NT Q NSW v SA T @‘@
ENfEENFEENEIESEIE EIE EIDE"D

O
B CEEIEESE[EIE] SE[ESW ®

21

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW v SA T
ENEENEIETEENFEIENEfEINET"EIETDE
B "EENEEfFEESE "EERYE
] BTN EETE HiETH

@‘ﬁ"

oo
DO,
@

22

M Forward checking

Idea:
Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

()

WA NT Q NSW v SA T e
ErE/ErE/esE[ErE|EeE[/EeE|EEE @‘Q'e@
| "EmrEErE[ErE] PE[ECE (V)
I Hjpoow|E EjErnE 1L | @
I I] By |

23

W Constraint propagation

Forward checking only looks at variables connected to
current value in constraint graph.

WA

NT

Q

NSW

v

SA

T

NT and SA cannot

Constraint propagation repeatedly enforces constraints
locally

hoth be blue!

QP

E—S

()
Q)

24

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of X there is some allowed y

e -

WA NT Q NSW v SA T @"é

] H(oow|m EjErE H(EDE @‘o@
< / ®
consistent arc.

constraint propagation propagates arc consistency on the graph.

25

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed y

e -

WA NT Q NSW v SA T @"é

=
I mjr .)ﬂlll HjET R (V)
\9/ @

inconsistent arc.
remove blue from source—> consistent arc.

26

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed y

“;—-"H:—"“tr

WA Q NSW SA T @‘@

] 1 mll O

O
\é/ @
this arc just became inconsistent
If Xloses a value, neighbors of X need to be rechecked:

i.e. incoming arcs can become inconsistent again
(outgoing arcs will stay consistent).

27

M Arc consistency

Simplest form of propagation makes each arc consistent

X > Yis consistent iff
for every value x of Xthere is some allowed y

SBd e -

() -
WA Q NSW SA T Q‘@
— O 1] m:(B Xmrm O

If X'loses a value, neighbors of X' need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Time complexity: O(n2d3) 28

M Arc Consistency

This is a propagation algorithm. It's like sending messages to neighbors
on the graph! How do we schedule these messages?

Every time a domain changes, all incoming messages need to be re-
send. Repeat until convergence - no message will change any
domains.

Since we only remove values from domains when they can never be

part of a solution, an empty domain means no solution possible at all >
back out of that branch.

Forward checking is simply sending messages into a variable that just
got its value assigned. First step of arc-consistency.

29

W Try it yourself

[R,B,G] [R,B,G]

@ O

[R]

O O

[R/B,G] [R,B,G]

Use all heuristics including arc-propagation to solve this problem.

30

Tree-structured CSPs

Om0
O G

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d?*) time

Compare to general CSPs, where worst-case time is O(d")

31

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

/\

N
A /g/

B W
/Tkj_r&/lz \“B/JKB B ’_@ a priori.
__ _ R" G’_R 3 B constrained

G

. t nodes
2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X)), X;)

3. For j from 1 to n, assign X, consistently with Parent(X;)

Note: After the backward pass, there is guaranteed
to be a legal choice for a child note for any of its
leftover values.

This removes any inconsistent values from Parent(Xj),
it applies arc-consistency moving backwards.

Sections 3.7 and 4.4, Chapter 5 of AIMAZ: 35

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O—5 O—@
c P NG
O O
Q. @

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d®- (n — c)d?), very fast for small ¢

Spctions 3.7 and 4.4, Chapter 5 of AIMAZe

kL]

M Junction Tree Decompositions

M Local search for CSPs

Note: The path to the solution is unimportant, so we can
apply local search!

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climb with A(n) = total number of violated constraints

35

M Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Actions: move queen in column
Goal test: no attacks

Evaluation: A(n) = number of attacks

N
> izva ™ im o
BN =

h=5 h=2 h=0

36

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R:

number of variables

CPU|{
time

]
critical
ratio

Sections 3.7 and 4.4, Chagler 5 of AIMAZe 44

M Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Ba((j:ktracking = depth-first search with one variable assigned per
node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later
failure

Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies

Iterative min-conflicts is usually effective in practice
38

	Slide 1: Constraint satisfaction problems (CSPs)
	Slide 2: Example: Map-Coloring
	Slide 3: Example: Map-Coloring
	Slide 4: Constraint graph
	Slide 5: Varieties of CSPs
	Slide 6: Varieties of constraints
	Slide 7: Example: Cryptarithmetic
	Slide 8: Real-world CSPs
	Slide 9: Standard search formulation
	Slide 10: Backtracking (Depth-First) search
	Slide 11: Backtracking example
	Slide 12: Backtracking example
	Slide 13: Backtracking example
	Slide 14: Backtracking example
	Slide 15: Improving backtracking efficiency
	Slide 16: Which variable should be assigned next? minimum remaining values heuristic
	Slide 17: Which variable should be assigned next?  degree heuristic
	Slide 18: In what order should its values be tried?  least constraining value heuristic
	Slide 19: Rationale for MRV, DH, LCV
	Slide 20: Can we detect inevitable failure early?  forward checking
	Slide 21: Forward checking
	Slide 22: Forward checking
	Slide 23: Forward checking
	Slide 24: Constraint propagation
	Slide 25: Arc consistency
	Slide 26: Arc consistency
	Slide 27: Arc consistency
	Slide 28: Arc consistency
	Slide 29: Arc Consistency
	Slide 30: Try it yourself
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Junction Tree Decompositions
	Slide 35: Local search for CSPs
	Slide 36: Example: 4-Queens
	Slide 37
	Slide 38: Summary

