
1

Constraint satisfaction problems (CSPs)

◼ CSP:
◼ state is defined by variables Xi with values from domain Di

◼ goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

◼ Allows useful general-purpose algorithms with more power
than standard search algorithms

2

Example: Map-Coloring

◼ Variables WA, NT, Q, NSW, V, SA, T

◼ Domains Di = {red,green,blue}

◼ Constraints: adjacent regions must have different colors
◼ e.g., WA ≠ NT

3

Example: Map-Coloring

◼ Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red,NSW =
green,V = red,SA = blue,T = green

4

Constraint graph

◼ Binary CSP: each constraint relates two variables

◼ Constraint graph: nodes are variables, arcs are constraints

5

Varieties of CSPs

◼ Discrete variables
◼ finite domains:

◼ n variables, domain size d → O(d n) complete assignments

◼ e.g., 3-SAT (NP-complete)

◼ infinite domains:
◼ integers, strings, etc.

◼ e.g., job scheduling, variables are start/end days for each job:

StartJob1 + 5 ≤ StartJob3

◼ Continuous variables
◼ e.g., start/end times for Hubble Space Telescope observations

◼ linear constraints solvable in polynomial time by linear programming

6

Varieties of constraints

◼ Unary constraints involve a single variable,

◼ e.g., SA ≠ green

◼ Binary constraints involve pairs of variables,

◼ e.g., SA ≠ WA

◼ Higher-order constraints involve 3 or more
variables,

◼ e.g., SA ≠ WA ≠ NT

7

Example: Cryptarithmetic

◼ Variables: F T U W R O X1 X2 X3

◼ Domains: {0,1,2,3,4,5,6,7,8,9} {0,1}

◼ Constraints: Alldiff (F,T,U,W,R,O)
◼ O + O = R + 10 · X1

◼ X1 + W + W = U + 10 · X2

◼ X2 + T + T = O + 10 · X3

◼ X3 = F, T ≠ 0, F ≠ 0

8

Real-world CSPs

◼ Assignment problems
◼ e.g., who teaches what class

◼ Timetabling problems
◼ e.g., which class is offered when and where?

◼ Transportation scheduling
◼ Factory scheduling

◼ Notice that many real-world problems involve real-
valued variables

9

Standard search formulation

Let’s try the standard search formulation.

We need:
• Initial state: none of the variables has a value (color)
• Successor state: one of the variables without a value will get some value.
• Goal: all variables have a value and none of the constraints is violated.

N! x D^N

N layers
WA NT TWA WA

WA
NT

WA
NT

WA
NT

NxD

[NxD]x[(N-1)xD]

NT
WA

Equal!

There are N! x D^N nodes in the tree but only D^N distinct states??

10

Backtracking (Depth-First) search

WAWA WA

WA
NT

WA
NT

D

D^2

• Special property of CSPs: They are commutative:
This means: the order in which we assign variables
does not matter.

• Better search tree: First order variables, then assign them values one-by-one.

WA
NT

NT
WA

=

WA
NT

D^N

11

Backtracking example

12

Backtracking example

13

Backtracking example

14

Backtracking example

15

Improving backtracking efficiency

◼ General-purpose methods can give huge
gains in speed:

◼ Which variable should be assigned next?

◼ In what order should its values be tried?

◼ Can we detect inevitable failure early?

◼ We’ll discuss heuristics for all these questions in
the following.

16

Which variable should be assigned next?

→minimum remaining values heuristic

◼ Most constrained variable:

choose the variable with the fewest legal values

◼ a.k.a. minimum remaining values (MRV)
heuristic

◼ Picks a variable which will cause failure as
soon as possible, allowing the tree to be
pruned.

17

Which variable should be assigned next?

→ degree heuristic

◼ Tie-breaker among most constrained
variables

◼ Most constraining variable:

◼ choose the variable with the most constraints on
remaining variables (most edges in graph)

18

In what order should its values be tried?

→ least constraining value heuristic

◼ Given a variable, choose the least
constraining value:

◼ the one that rules out the fewest values in the
remaining variables

◼ Leaves maximal flexibility for a solution.

◼ Combining these heuristics makes 1000
queens feasible

19

Rationale for MRV, DH, LCV

◼ In all cases we want to enter the most promising branch,
but we also want to detect inevitable failure as soon as
possible.

◼ MRV+DH: the variable that is most likely to cause failure in
a branch is assigned first. E.g X1-X2-X3, values is 0,1,
neighbors cannot be the same.

◼ LCV: tries to avoid failure by assigning values that leave
maximal flexibility for the remaining variables.

20

Can we detect inevitable failure early?

→ forward checking

◼ Idea:

◼ Keep track of remaining legal values for unassigned variables

that are connected to current variable.

◼ Terminate search when any variable has no legal values

21

Forward checking

◼ Idea:

◼ Keep track of remaining legal values for unassigned variables

◼ Terminate search when any variable has no legal values

22

Forward checking

◼ Idea:

◼ Keep track of remaining legal values for unassigned variables

◼ Terminate search when any variable has no legal values

23

Forward checking

◼ Idea:

◼ Keep track of remaining legal values for unassigned variables

◼ Terminate search when any variable has no legal values

24

Constraint propagation

◼ Forward checking only looks at variables connected to
current value in constraint graph.

◼ NT and SA cannot both be blue!

◼ Constraint propagation repeatedly enforces constraints
locally

25

Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

constraint propagation propagates arc consistency on the graph.

consistent arc.

26

Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

inconsistent arc.
remove blue from source→ consistent arc.

27

Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

◼ If X loses a value, neighbors of X need to be rechecked:

i.e. incoming arcs can become inconsistent again

(outgoing arcs will stay consistent).

this arc just became inconsistent

28

Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

◼ If X loses a value, neighbors of X need to be rechecked

◼ Arc consistency detects failure earlier than forward checking

◼ Can be run as a preprocessor or after each assignment

◼ Time complexity: O(n2d3)

29

Arc Consistency

◼ This is a propagation algorithm. It’s like sending messages to neighbors
on the graph! How do we schedule these messages?

◼ Every time a domain changes, all incoming messages need to be re-
send. Repeat until convergence → no message will change any

domains.

◼ Since we only remove values from domains when they can never be
part of a solution, an empty domain means no solution possible at all →

back out of that branch.

◼ Forward checking is simply sending messages into a variable that just
got its value assigned. First step of arc-consistency.

30

Try it yourself

[R]

Use all heuristics including arc-propagation to solve this problem.

[R,B,G][R,B,G]

[R,B,G] [R,B,G]

31

32

This removes any inconsistent values from Parent(Xj),
it applies arc-consistency moving backwards.

B
R
G

B
G

B
R
G

R G B

B G R R G B

Note: After the backward pass, there is guaranteed
to be a legal choice for a child note for any of its
leftover values.

a priori
constrained
nodes

33

34

Junction Tree Decompositions

35

Local search for CSPs

◼ Note: The path to the solution is unimportant, so we can
apply local search!

◼ To apply to CSPs:
◼ allow states with unsatisfied constraints
◼ operators reassign variable values

◼ Variable selection: randomly select any conflicted variable

◼ Value selection by min-conflicts heuristic:
◼ choose value that violates the fewest constraints
◼ i.e., hill-climb with h(n) = total number of violated constraints

36

Example: 4-Queens

◼ States: 4 queens in 4 columns (44 = 256 states)
◼ Actions: move queen in column
◼ Goal test: no attacks
◼ Evaluation: h(n) = number of attacks

37

38

Summary

◼ CSPs are a special kind of problem:
◼ states defined by values of a fixed set of variables

◼ goal test defined by constraints on variable values

◼ Backtracking = depth-first search with one variable assigned per
node

◼ Variable ordering and value selection heuristics help significantly

◼ Forward checking prevents assignments that guarantee later
failure

◼ Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies

◼ Iterative min-conflicts is usually effective in practice

	Slide 1: Constraint satisfaction problems (CSPs)
	Slide 2: Example: Map-Coloring
	Slide 3: Example: Map-Coloring
	Slide 4: Constraint graph
	Slide 5: Varieties of CSPs
	Slide 6: Varieties of constraints
	Slide 7: Example: Cryptarithmetic
	Slide 8: Real-world CSPs
	Slide 9: Standard search formulation
	Slide 10: Backtracking (Depth-First) search
	Slide 11: Backtracking example
	Slide 12: Backtracking example
	Slide 13: Backtracking example
	Slide 14: Backtracking example
	Slide 15: Improving backtracking efficiency
	Slide 16: Which variable should be assigned next? minimum remaining values heuristic
	Slide 17: Which variable should be assigned next?  degree heuristic
	Slide 18: In what order should its values be tried?  least constraining value heuristic
	Slide 19: Rationale for MRV, DH, LCV
	Slide 20: Can we detect inevitable failure early?  forward checking
	Slide 21: Forward checking
	Slide 22: Forward checking
	Slide 23: Forward checking
	Slide 24: Constraint propagation
	Slide 25: Arc consistency
	Slide 26: Arc consistency
	Slide 27: Arc consistency
	Slide 28: Arc consistency
	Slide 29: Arc Consistency
	Slide 30: Try it yourself
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Junction Tree Decompositions
	Slide 35: Local search for CSPs
	Slide 36: Example: 4-Queens
	Slide 37
	Slide 38: Summary

