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Constraint satisfaction problems (CSPs)

◼ CSP:
◼ state is defined by variables Xi with values from domain Di

◼ goal test is a set of constraints specifying allowable combinations of 
values for subsets of variables

◼ Allows useful general-purpose algorithms with more power 
than standard search algorithms
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Example: Map-Coloring

◼ Variables WA, NT, Q, NSW, V, SA, T

◼ Domains Di = {red,green,blue}

◼ Constraints: adjacent regions must have different colors
◼ e.g., WA ≠ NT
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Example: Map-Coloring

◼ Solutions are complete and consistent assignments, 
e.g., WA = red, NT = green,Q = red,NSW = 
green,V = red,SA = blue,T = green
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Constraint graph

◼ Binary CSP: each constraint relates two variables

◼ Constraint graph: nodes are variables, arcs are constraints
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Varieties of CSPs

◼ Discrete variables
◼ finite domains:

◼ n variables, domain size d → O(d n) complete assignments

◼ e.g., 3-SAT (NP-complete)

◼ infinite domains:
◼ integers, strings, etc.

◼ e.g., job scheduling, variables are start/end days for each job:

StartJob1 + 5 ≤ StartJob3

◼ Continuous variables
◼ e.g., start/end times for Hubble Space Telescope observations

◼ linear constraints solvable in polynomial time by linear programming
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Varieties of constraints

◼ Unary constraints involve a single variable, 

◼ e.g., SA ≠ green

◼ Binary constraints involve pairs of variables,

◼ e.g., SA ≠ WA

◼ Higher-order constraints involve 3 or more 
variables,

◼ e.g., SA ≠ WA ≠ NT
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Example: Cryptarithmetic

◼ Variables: F T U W R O                      X1 X2 X3

◼ Domains: {0,1,2,3,4,5,6,7,8,9}            {0,1}

◼ Constraints: Alldiff (F,T,U,W,R,O)
◼ O + O = R + 10 · X1

◼ X1 + W + W = U + 10 · X2

◼ X2 + T + T = O + 10 · X3

◼ X3 = F, T ≠ 0, F ≠ 0
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Real-world CSPs

◼ Assignment problems
◼ e.g., who teaches what class

◼ Timetabling problems
◼ e.g., which class is offered when and where?

◼ Transportation scheduling
◼ Factory scheduling

◼ Notice that many real-world problems involve real-
valued variables
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Standard search formulation

Let’s try the standard search formulation.

We need:
• Initial state: none of the variables has a value (color)
• Successor state: one of the variables without a value will get some value.
• Goal: all variables have a value and none of the constraints is violated.

N! x D^N

N layers
WA NT TWA WA

WA
NT

WA
NT

WA
NT

NxD

[NxD]x[(N-1)xD]

NT
WA

Equal!

There are N! x D^N nodes in the tree but only D^N distinct states??
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Backtracking (Depth-First) search

WAWA WA

WA
NT

WA
NT

D

D^2

• Special property of CSPs: They are commutative:
This means: the order in which we assign variables
does not matter.

• Better search tree: First order variables, then assign them values one-by-one. 

WA
NT

NT
WA

=

WA
NT

D^N
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Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example
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Improving backtracking efficiency

◼ General-purpose methods can give huge 
gains in speed:

◼ Which variable should be assigned next?

◼ In what order should its values be tried?

◼ Can we detect inevitable failure early?

◼ We’ll discuss heuristics for all these questions in 
the following.
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Which variable should be assigned next?

→minimum remaining values heuristic

◼ Most constrained variable:

choose the variable with the fewest legal values

◼ a.k.a. minimum remaining values (MRV)
heuristic

◼ Picks a variable which will cause failure as 
soon as possible, allowing the tree to be 
pruned.
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Which variable should be assigned next?

→ degree heuristic

◼ Tie-breaker among most constrained 
variables

◼ Most constraining variable:

◼ choose the variable with the most constraints on 
remaining variables (most edges in graph)
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In what order should its values be tried? 

→ least constraining value heuristic

◼ Given a variable, choose the least 
constraining value:

◼ the one that rules out the fewest values in the 
remaining variables

◼ Leaves maximal flexibility for a solution.

◼ Combining these heuristics makes 1000 
queens feasible
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Rationale for MRV, DH, LCV 

◼ In all cases we want to enter the most promising branch, 
but we also want to detect inevitable failure as soon as 
possible.

◼ MRV+DH: the variable that is most likely to cause failure in 
a branch is assigned first. E.g X1-X2-X3, values is 0,1, 
neighbors cannot be the same. 

◼ LCV: tries to avoid failure by assigning values that leave 
maximal flexibility for the remaining variables.  
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Can we detect inevitable failure early? 

→ forward checking

◼ Idea: 

◼ Keep track of remaining legal values for unassigned variables

that are connected to current variable.

◼ Terminate search when any variable has no legal values
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Forward checking

◼ Idea: 

◼ Keep track of remaining legal values for unassigned variables

◼ Terminate search when any variable has no legal values
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Forward checking

◼ Idea: 

◼ Keep track of remaining legal values for unassigned variables

◼ Terminate search when any variable has no legal values
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Forward checking

◼ Idea: 

◼ Keep track of remaining legal values for unassigned variables

◼ Terminate search when any variable has no legal values
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Constraint propagation

◼ Forward checking only looks at variables connected to 
current value in constraint graph.

◼ NT and SA cannot both be blue!

◼ Constraint propagation repeatedly enforces constraints 
locally
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Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X  there is some allowed y

constraint propagation propagates arc consistency on the graph.

consistent arc.
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Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

inconsistent arc.
remove blue from source→ consistent arc.
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Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

◼ If X loses a value, neighbors of X need to be rechecked:

i.e. incoming arcs can become inconsistent again 

(outgoing arcs will stay consistent).

this arc just became inconsistent
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Arc consistency

◼ Simplest form of propagation makes each arc consistent

◼ X →Y is consistent iff

for every value x of X there is some allowed y

◼ If X loses a value, neighbors of X need to be rechecked

◼ Arc consistency detects failure earlier than forward checking

◼ Can be run as a preprocessor or after each assignment

◼ Time complexity: O(n2d3)
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Arc Consistency

◼ This is a propagation algorithm. It’s like sending messages to neighbors 
on the graph! How do we schedule these messages?

◼ Every time a domain changes, all incoming messages need to be re-
send. Repeat until convergence → no message will change any 

domains.

◼ Since we only remove values from domains when they can never be 
part of a solution, an empty domain means no solution possible at all →

back out of that branch.

◼ Forward checking is simply sending messages into a variable that just 
got its value assigned. First step of arc-consistency.
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Try it yourself

[R]

Use all heuristics including arc-propagation to solve this problem.

[R,B,G][R,B,G]

[R,B,G] [R,B,G]
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This removes any inconsistent values from Parent(Xj),
it applies arc-consistency moving backwards.

B
R
G

B
G

B
R
G

R G B

B G R R G B

Note: After the backward pass, there is guaranteed
to be a legal choice for a child note for any of its
leftover values.

a priori
constrained
nodes
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Junction Tree Decompositions
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Local search for CSPs

◼ Note: The path to the solution is unimportant, so we can 
apply local search! 

◼ To apply to CSPs:
◼ allow states with unsatisfied constraints
◼ operators reassign variable values

◼ Variable selection: randomly select any conflicted variable

◼ Value selection by min-conflicts heuristic:
◼ choose value that violates the fewest constraints
◼ i.e., hill-climb with h(n) = total number of violated constraints
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Example: 4-Queens

◼ States: 4 queens in 4 columns (44 = 256 states)
◼ Actions: move queen in column
◼ Goal test: no attacks
◼ Evaluation: h(n) = number of attacks
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Summary

◼ CSPs are a special kind of problem:
◼ states defined by values of a fixed set of variables

◼ goal test defined by constraints on variable values

◼ Backtracking = depth-first search with one variable assigned per 
node

◼ Variable ordering and value selection heuristics help significantly

◼ Forward checking prevents assignments that guarantee later 
failure

◼ Constraint propagation (e.g., arc consistency) does additional 
work to constrain values and detect inconsistencies

◼ Iterative min-conflicts is usually effective in practice
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