

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University
Accredited by NBA & Accrediated by NAAC with 'A++' Grade,
Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 19BME301 – Medical Physics

III Year: V Semester

Unit III – PRODUCTION OF RADIONUCLIDES

Topic: Units of Radioactivity

Radiation units

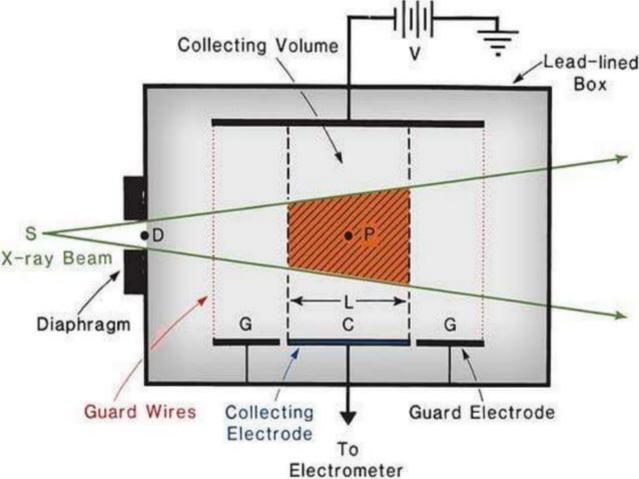
Units of Radioactivity
 Curie
 Becquerel

- Units of Radiation doses
 - 1) Units of Exposure Roentgen C/kg
 - Units of Absorption
 Physical dose Rad/ Gray
 Biological dose rem/seivert

Units of radioactivity

- Curie: corresponds to activity of 1 gram of Radium 226
- Original unit
- 1 Curie = 3.7 x 10¹⁰ radioactive decay per second
- SI unit is Becquerel
- 1 Bq = 1 radioactive decay per second
 = 2.703 x 10⁻¹¹ Ci
- Also as a measure of quantity of radioactive material i.e. the no. of atoms that will produce 1 Ci of radiation is

$$N = \frac{3.7 \times 10^{10}}{\lambda}$$


 1 gram of Cobalt 60 prod 44 TBq of radioactivity 883μg of ⁶⁰Co produces 1 Ci of radiation

Unit of Exposure X

- Measure of ionization produced in air by photons
- Cannot measure photon energies more than 3 MeV
- The actual amount of energy that reaches the body
- Exposure = <u>Total no. of ions of one sign</u> mass of air
- · SI unit is C/kg
- · Special unit is Roentgen

 Roentgen is defined as the quantity of radiation which liberates by ionization one esu of electricity per cm³ of air under standard temp and pressure.

1 Roentgen = $2.58 \times 10^{-4} \text{ C/kg}$

Absorption Dose D

- Physical Dose
- Amount of energy deposited in a unit mass of human tissue or medium
- · Original unit is rad

$$1 \text{ rad} = 100 \text{ erg/g}$$

· SI unit is Gray

$$1 Gray = 1 J/kg$$
$$1 Gray = 100 rad$$

How is exposure and absorbed dose related?

- Conversion factor is the F factor
- It converts the amount of exposure in Roentgen to the amount of absorbed dose in rad
- F factor depends on the effective Z of the medium and the type of ionizing radiation used
- F factor for air and soft tissue is nearly 1
- While for bone it is 4

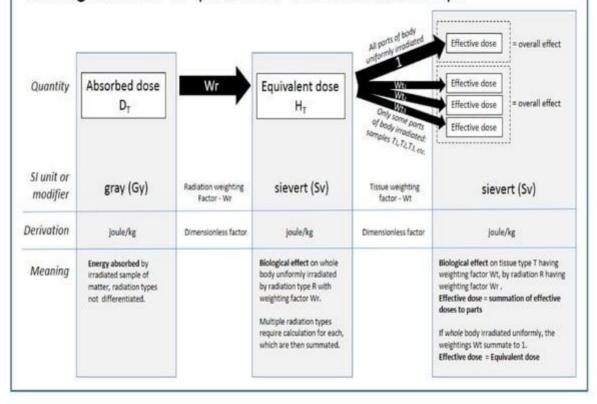
Equivalent Dose H

- Biological dose/effective dose/committed dose
- Represents stochastic biological effects of ionising radiation
- It is a weighted average of absorbed dose taking into account both the type f ionising radiation and the type of medium
- · Conversion factor is the O factor

•	x rays and gamma rays	1
	alpha rays	20
	neutrons	5-20

Equivalent dose H

H = Q factor x D


- · cgs unit is rem (roentgen equivalent in man)
- · SI unit is sievert
- 1 sievert = 100 rem

Effective Dose Equivalent

- Co relates a dose to a specific tissue to a equivalent risk factor from whole body dose
- Tissue weighting factor W_T
- Effective Dose Equivalent = Equivalent dose x W_T

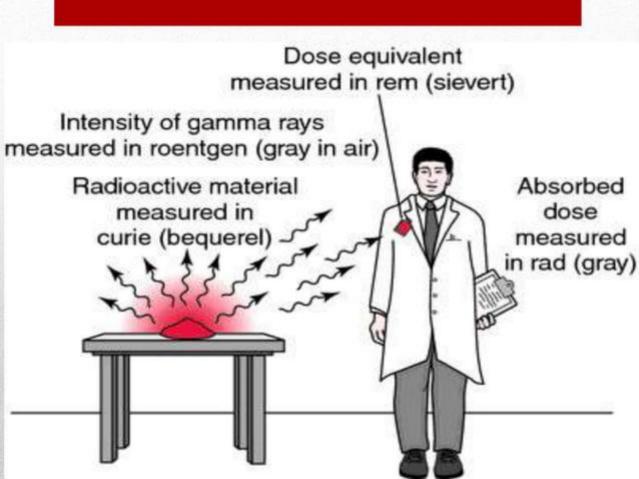
ORGAN	W_{T}	
GONADS	0.2	
COLON	0.12	
RED BONE MARROW	0.12	
LUNG	0.12	
STOMACH	0.12	
BLADDER	0.05	
CHEST	0.05	
LIVER	0.05	
THYROID	0.05	
ESOPHAGUS	0.05	
SKIN	0.01	
BONE SURFACE	0.01	
OTHERS	0.05	

Ionising radiation - SI "protection" dose unit relationships

Environmental Radiation limits

· Radiation worker limit 5 rem/yr

Pregnancy 0.05 rem/ month


Public 1 rem/yr

kerma

- Acronym for Kinetic Energy released per unit mass
- K = sum of kinetic energy all charged particle liberated by ionizing radiation per unit weight of matter
- $K = \underline{dE}$ dm
- · Unit is J/kg
- It is different from absorbed dose as some of the kinetic energy escapes from the absorbing volume

FLUENCE

- Fluence is the particle flux or radiative flux integrated over time
- Fluence = total no. of particles that intersect a unit area in a specified time

Thank You