N
Functional Modeling

Preeti Mishra
Course Instructor

&

Introduction
I~ T~~~

* Functional Modelling gives the process perspective of
the object-oriented analysis model

* And an overview of what the system is supposed to do.

+ It defines the function of the internal processes in
the system with the aid of Data Flow Diagrams (DFDs).

* It depicts the functional derivation of the data values
without indicating how they are derived when they are
computed, or why they need to be computed.

+ A functional modelling perspective concentrates on
describing the dynamic process.

Various Functional Models

I~ T~~~

* One of the first well defined function models, was the
Functional Flow Block Diagram (FFBD) developed by the
defence-related TRW Incorporated in the 1950s.

* Data Flow Diagram

Sy

N

Function Flow Block
Diagram

Introduction

I~ T~~~

+ The FFBD notation was developed in the 1950s, and is
widely used in classical systems engineering.
- FFBDs are one of the classic business process modelling
methodologies, along with :
- flow charts,
- data flow diagrams,
- control flow diagrams, etc

Sy

Function flow block

diagram
I~~~ T~

A functional block diagram is a block diagram, that
describes the functions and interrelationships of a system.
The functional block diagram can picture:

Functions of a system pictured by blocks

Input and output elements of a block pictured with lines, and
Relationships between the functions

Functional sequences and paths for matter and or signals

The block diagram can use additional schematic symbols to show
particular properties.

Specific function block diagram are the classic Functional Flow
Block Diagram, and the Function Block Diagram (FBD) used in the

@gn of programmable logic controllers.

P~ T~~~

Function block: Each function on an FFBD
should be separate and be represented by
single box (solid line). Each function needs
to stand for definite, finite, discrete
action to be accomplished by system
elements.

Function numbering: Each level should have

a consistent number scheme and provide

information concerning function origin.

These numbers establish identification and

relationships that will carry through all

Functional Analysis and Allocation activities
ylitate traceability from lower to

evels.

lapt Ding eacice

Fracien Neober

Py =t

Fuactia Ty}

el T4 Nt Funtinn

Gepet Do Fancinn

N\/\"\/

Functional reference: Each diagram should contain a
reference to other functional diagrams by using a
functional reference (box in brackets).

Flow connection: Lines connecting functions should only
indicate function flow and not a lapse in time or
intermediate activity.

Flow direction: Diagrams should be laid out so that the
flow direction is generally from left to right. Arrows are
often used to indicate functional flows.

Sy

e~ I

Summing gates: A circle is used to
denote a summing gate and is used when
AND/OR is present. AND is used to
indicate parallel functions and all
conditions must be satisfied to proceed.
OR is used to indicate that alternative
paths can be satisfied to proceed.

60 and NO-GO paths: "G" and "bar 6"
are used to denote "go" and "no-go”
conditions. These symbols are placed
adjacent to lines leaving a particular
function to indicate alternative paths.

Sy

I

Tt |

—

Tt tl

- L

Farcton £)

W

AND: A condition in which all
preceding or succeeding paths are
required.

Exclusive OR: A condition in which one
of multiple preceding or succeeding D
paths is required, but not all. © &

Inclusive OR: A condition in which ~ — | |
one, some, or all of the multiple .
preceding or succeeding paths are —
required C (9

Sy

N

Data Flow Diagram

Already Discussed
Refer to DFD PPTs

Problems with Functional

Modeling
I~~~ T~

* Functional Modeling is not about modeling real things. It is
about writing expressions which describe the relationship
between things. Also, one tends to model what the
program does, not what it does it to.

* Functional Programming encourages writing pure, generic
functions which allow making decisions at the top level of
the call hierarchy. This is the opposite philosophy to
Object-oriented design, which encourages deferring actual
behaviour to decisions taken low down by overriding class
methods.

SNy

