
A Binary Search Tree (BST) is a tree in which all the nodes follow the below-
mentioned properties −

 The left sub-tree of a node has a key less than or equal to its parent node's
key.

 The right sub-tree of a node has a key greater than or equal to its parent
node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the
right sub-tree and can be defined as −

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Representation

BST is a collection of nodes arranged in a way where they maintain BST
properties. Each node has a key and an associated value. While searching, the
desired key is compared to the keys in BST and if found, the associated value is
retrieved.

Following is a pictorial representation of BST −

We observe that the root node key (27) has all less-valued keys on the left sub-
tree and the higher valued keys on the right sub-tree.

Basic Operations

Following are the basic operations of a tree −

 Search − Searches an element in a tree.
 Insert − Inserts an element in a tree.
 Pre-order Traversal − Traverses a tree in a pre-order manner.

 In-order Traversal − Traverses a tree in an in-order manner.
 Post-order Traversal − Traverses a tree in a post-order manner.

Defining a Node

Define a node that stores some data, and references to its left and right child
nodes.

struct node {
 int data;
 struct node *leftChild;
 struct node *rightChild;
};

Search Operation

Whenever an element is to be searched, start searching from the root node. Then
if the data is less than the key value, search for the element in the left subtree.
Otherwise, search for the element in the right subtree. Follow the same algorithm
for each node.

Algorithm

1. START
2. Check whether the tree is empty or not
3. If the tree is empty, search is not possible
4. Otherwise, first search the root of the tree.
5. If the key does not match with the value in the root, search its subtrees.
6. If the value of the key is less than the root value, search the left subtree
7. If the value of the key is greater than the root value, search the right subtree.
8. If the key is not found in the tree, return unsuccessful search.
9. END

Insert Operation

Whenever an element is to be inserted, first locate its proper
location. Start searching from the root node, then if the data is
less than the key value, search for the empty location in the left
subtree and insert the data. Otherwise, search for the empty
location in the right subtree and insert the data.

Algorithm

1 – START

2 – If the tree is empty, insert the first element as the root node of the tree. The following

elements are added as the leaf nodes.

3 – If an element is less than the root value, it is added into the left subtree as a leaf node.

4 – If an element is greater than the root value, it is added into the right subtree as a leaf node.

5 – The final leaf nodes of the tree point to NULL values as their child nodes.

6 – END

Inorder Traversal

The inorder traversal operation in a Binary Search Tree visits all its nodes in the
following order −

 Firstly, we traverse the left child of the root node/current node, if any.
 Next, traverse the current node.
 Lastly, traverse the right child of the current node, if any.

Algorithm

1. START
2. Traverse the left subtree, recursively
3. Then, traverse the root node
4. Traverse the right subtree, recursively.
5. END

Preorder Traversal

The preorder traversal operation in a Binary Search Tree visits all its nodes.
However, the root node in it is first printed, followed by its left subtree and then
its right subtree.

Algorithm

1. START
2. Traverse the root node first.
3. Then traverse the left subtree, recursively
4. Later, traverse the right subtree, recursively.
5. END

Postorder Traversal

Like the other traversals, postorder traversal also visits all the nodes in a Binary
Search Tree and displays them. However, the left subtree is printed first, followed
by the right subtree and lastly, the root node.

Algorithm

1. START
2. Traverse the left subtree, recursively
3. Traverse the right subtree, recursively.
4. Then, traverse the root node
5. END

