Problems on Calendar

1.

It was Sunday on Jan 1, 2006. What was the day of the week Jan 1, 2010 ?
Sunday
Saturday
Friday
Wednesday
Answer: Option
Explanation:
On $31^{\text {st }}$ December, 2005 it was Saturday.
Number of odd days from the year 2006 to the year $2009=(1+1+2+1)=5$ days.
\therefore On $31^{\text {st }}$ December 2009, it was Thursday.
Thus, on $1^{\text {st }}$ Jan, 2010 it is Friday.
2.

What was the day of the week on $28^{\text {th }}$ May, 2006 ?
Thursday
Friday
Saturday
Sunday
Answer: Option
Explanation:
28 May, $2006=(2005$ years + Period from 1.1.2006 to 28.5 .2006$)$
Odd days in 1600 years $=0$
Odd days in 400 years $=0$
5 years $=(4$ ordinary years +1 leap year $)=(4 \times 1+1 \times 2) \equiv 6$ odd days

Jan. Feb. March April May $(31+28+31+30+28)=148$ days
$\therefore 148$ days $=(21$ weeks +1 day $) \equiv 1$ odd day.
Total number of odd days $=(0+0+6+1)=7 \equiv 0$ odd day.
Given day is Sunday.
3.

What was the day of the week on $17^{\text {th }}$ June, $1998 ?$
Monday
Tuesday
Wednesday
Thursday
Answer: Option

Explanation:

$17^{\text {th }}$ June, $1998=(1997$ years + Period from 1.1.1998 to 17.6.1998 $)$
Odd days in 1600 years $=0$
Odd days in 300 years $=(5 \times 3) \equiv 1$
97 years has 24 leap years +73 ordinary years.
Number of odd days in 97 years $(24 \times 2+73)=121=2$ odd days.
Jan. Feb. March April May June $(31+28+31+30+31+17)=168$ days
$\therefore 168$ days $=24$ weeks $=0$ odd day.
Total number of odd days $=(0+1+2+0)=3$.
Given day is Wednesday.
4.

What will be the day of the week $15^{\text {th }}$ August, 2010?
Sunday
Monday
Tuesday
Friday
Answer: Option
Explanation:
$15^{\text {th }}$ August, $2010=(2009$ years + Period 1.1.2010 to 15.8 .2010$)$
Odd days in 1600 years $=0$
Odd days in 400 years $=0$
9 years $=(2$ leap years +7 ordinary years $)=(2 \times 2+7 \times 1)=11$ odd days $\equiv 4$ odd days.

```
Jan. Feb. March April May June July Aug. (31 + 28 + 31 + 30 + 31 + 30 + 31 + 15) = 227 days
```

$\therefore 227$ days $=(32$ weeks +3 days $) \equiv 3$ odd days.
Total number of odd days $=(0+0+4+3)=7 \equiv 0$ odd days.
Given day is Sunday.
5.

Today is Monday. After 61 days, it will be:
Wednesday

Saturday
Tuesday
Thursday
Answer: Option
Explanation:
Each day of the week is repeated after 7 days.
So, after 63 days, it will be Monday.
\therefore After 61 days, it will be Saturday.
6.

If $\mathbf{6}^{\text {th }}$ March, 2005 is Monday, what was the day of the week on $6^{\text {th }}$ March, 2004?
Sunday
Saturday
Tuesday
Wednesday
Answer: Option
Explanation:
The year 2004 is a leap year. So, it has 2 odd days.
But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only.
\therefore The day on $6^{\text {th }}$ March, 2005 will be 1 day beyond the day on $6^{\text {th }}$ March, 2004.
Given that, $6^{\text {th }}$ March, 2005 is Monday.
$\therefore 6^{\text {th }}$ March, 2004 is Sunday (1 day before to $6^{\text {th }}$ March, 2005).
7.

On what dates of April, 2001 did Wednesday fall?
$1^{\text {st }}, 8^{\text {th }}, 15^{\mathrm{th}}, 22^{\text {nd }}, 29^{\text {th }}$
$2^{\text {nd }}, 9^{\text {th }}, 16^{\text {th }}, 23^{\text {rd }}, 30^{\text {th }}$
$3^{\text {rd }}, 10^{\text {th }}, 17^{\text {th }}, 24^{\text {th }}$
$4^{\text {th }}, 11^{\text {th }}, 18^{\text {th }}, 25^{\text {th }}$
Answer: Option

Explanation:

We shall find the day on $1^{\text {st }}$ April, 2001.
$1^{\text {st }}$ April, $2001=(2000$ years + Period from 1.1.2001 to 1.4.2001 $)$
Odd days in 1600 years = 0
Odd days in 400 years $=0$
Jan. Feb. March April
$(31+28+31+1)=91$ days $\equiv 0$ odd days.
Total number of odd days $=(0+0+0)=0$

On $1^{\text {st }}$ April, 2001 it was Sunday.
In April, 2001 Wednesday falls on $4^{\text {th }}, 11^{\text {th }}, 18^{\text {th }}$ and $25^{\text {th }}$.
8.

How many days are there in x weeks x days?
$7 x^{2}$
$8 x$
$14 x$
7
Answer: Option
Explanation:
x weeks x days $=(7 x+x)$ days $=8 x$ days.
9.

The last day of a century cannot be
Monday
Wednesday
Tuesday
Friday
Answer: Option
Explanation:
100 years contain 5 odd days.
\therefore Last day of $1^{\text {st }}$ century is Friday.
200 years contain $(5 \times 2) \equiv 3$ odd days.
\therefore Last day of $2^{\text {nd }}$ century is Wednesday.
300 years contain $(5 \times 3)=15 \equiv 1$ odd day.
\therefore Last day of $3^{\text {rd }}$ century is Monday.
400 years contain 0 odd day.
\therefore Last day of $4^{\text {th }}$ century is Sunday.
This cycle is repeated.
\therefore Last day of a century cannot be Tuesday or Thursday or Saturday.
10.

On $8^{\text {th }}$ Feb, 2005 it was Tuesday. What was the day of the week on $8^{\text {th }}$ Feb, 2004?
Tuesday
Monday
Sunday
Wednesday
Answer: Option
Explanation:

The year 2004 is a leap year. It has 2 odd days.
\therefore The day on $8^{\text {th }}$ Feb, 2004 is 2 days before the day on $8^{\text {th }}$ Feb, 2005.
Hence, this day is Sunday.
11.

The calendar for the year 2007 will be the same for the year:
2014
2016
2017
2018
Answer: Option
Explanation:
Count the number of odd days from the year 2007 onwards to get the sum equal to 0 odd day.

Year : 20072008200920102011201220132014201520162017 Odd day : 12111 211121

Sum $=14$ odd days $\equiv 0$ odd days.
\therefore Calendar for the year 2018 will be the same as for the year 2007.
12.

Which of the following is not a leap year?
700
800
1200
2000
Answer: Option
Explanation:
The century divisible by 400 is a leap year.
\therefore The year 700 is not a leap year.
13.

On $8^{\text {th }}$ Dec, 2007 Saturday falls. What day of the week was it on $8^{\text {th }}$ Dec, 2006 ?
Sunday
Thursday
Tuesday
Friday
Answer: Option
Explanation:
The year 2006 is an ordinary year. So, it has 1 odd day.

So, the day on $8^{\text {th }}$ Dec, 2007 will be 1 day beyond the day on $8^{\text {th }}$ Dec, 2006.
But, $8^{\text {th }}$ Dec, 2007 is Saturday.
$\therefore 8^{\text {th }}$ Dec, 2006 is Friday.
14.

January 1, 2008 is Tuesday. What day of the week lies on Jan 1, 2009 ?
Monday
Wednesday
Thursday
Sunday
Answer: Option
Explanation:
The year 2008 is a leap year. So, it has 2 odd days.
$1^{\text {st }}$ day of the year 2008 is Tuesday (Given)
So, $1^{\text {st }}$ day of the year 2009 is 2 days beyond Tuesday.
Hence, it will be Thursday.
15.

January 1, 2007 was Monday. What day of the week lies on Jan. 1, 2008 ?
Monday
Tuesday
Wednesday
Sunday
Answer: Option
Explanation:
The year 2007 is an ordinary year. So, it has 1 odd day.
$1^{\text {st }}$ day of the year 2007 was Monday.
$1^{\text {st }}$ day of the year 2008 will be 1 day beyond Monday.
Hence, it will be Tuesday.

