

SNS COLLEGE OF TECHNO. (AN AUTONOMOUS INSTITUTION)

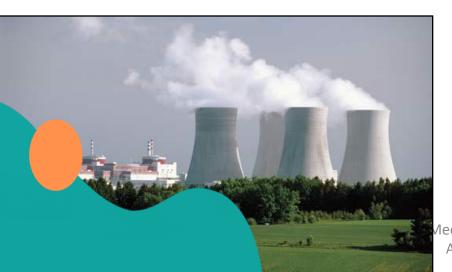
Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A++' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: 19BME301 – Medical Physics

III Year : V Semester

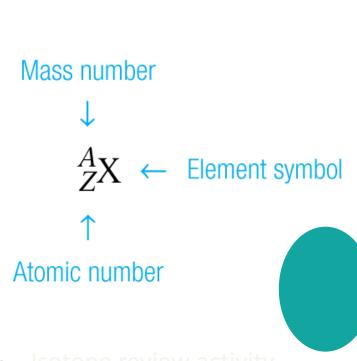
Unit I – RADIATION AND RADIOACTIVE DECAY


Topic : Radioactive Decay

19BME301/Medical Physics/Dr Karthika A/AP/BME



- 1. To learn the types of radioactive decay
- 2. To learn to write nuclear equations for radioactive decay
- 3. To learn how one element may be changed to another by particle bombardment
- 4. To learn about radiation detection instruments
- 5. To understand half-life



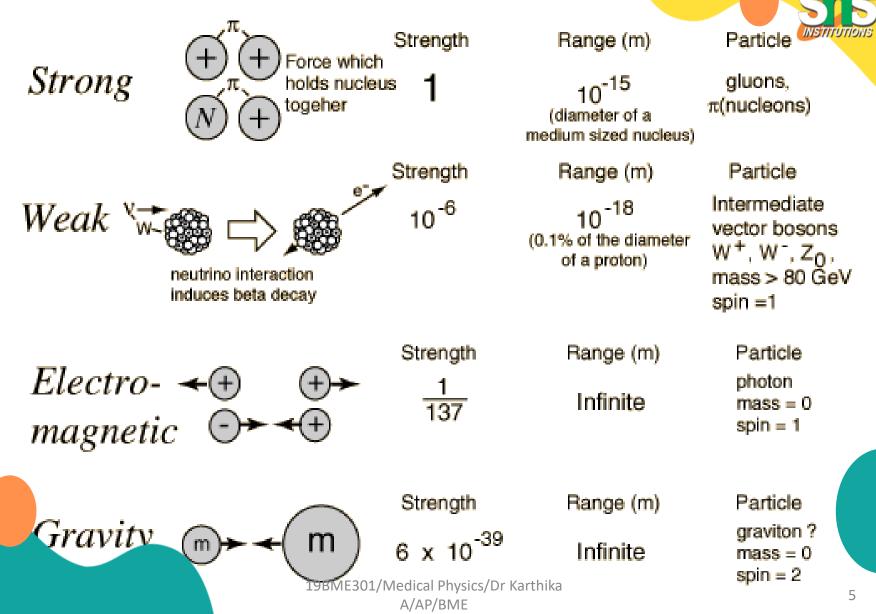
2

A Review of Atomic Terms

- Nucleons particles found in the nucleus of an atom
 - neutrons
 - protons
- Atomic Number (Z) number of protons in the nucleus
- Mass Number (A) sum of the number of protons and neutrons
- Isotopes atoms with identical atomic numbers but different mass numbers
 - Nuclide each unique atom

19BME301/Medical Physics/Dr Karthika A/AP/BME

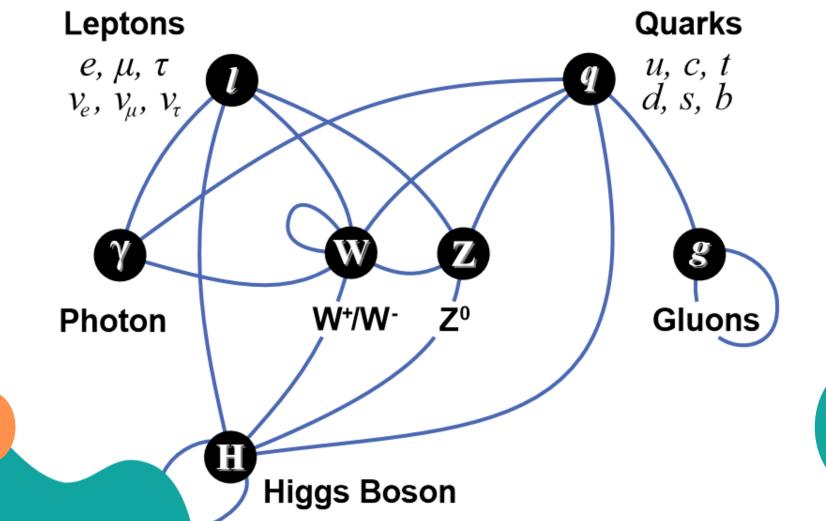
3



- Radioactivity the spontaneous decomposition of a nucleus forming a different nucleus and producing one or more additional particles
- Nuclear Equation shows the radioactive decomposition of an element

 ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$

 Nuclear Forces – strong nuclear force holds neutrons and protons together to form a nucleus (counters electromagnetic repulsion). Weak nuclear force operates within individual nucleons and gives rise to some kinds of radioactivity



Standard Model

Discovery of Radioactivity

- Antoine Henri Becquerel (1852-1908)
 - Noticed the fogging of photographic plate by uranium crystals
- Pierre Curie (1859-1906), Marie Curie (1867-1934)
 - Further studies of uranium and discovery of polonium and radium. Marie received two Nobel prizes. She died from the effects of radiation doses received during her experiments

• Ernest Rutherford (1871-1937)

 His understanding of atomic structure helped us understand the role of the nucleus. He defined many of the terms used to discuss radioactivity today

Types of Radioactive Decay

- Alpha-particle production
- Alpha particle helium nucleus
 - Examples

$${}^{222}_{88}\text{Ra} \rightarrow {}^{4}_{2}\text{He} + {}^{218}_{86}\text{Rn}$$

$$_{90}^{230}$$
Th $\rightarrow {}_{2}^{4}$ He + $_{88}^{226}$ Ra

• Net effect is loss of 4 in mass number and loss of 2 dia ratemic number.

Types of Radioactive Decay

- Beta-particle production
- Beta particle electron
 - Examples

$$^{234}_{90}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + ^{0}_{-1}\text{e}$$

 $^{131}_{53}\text{I} \rightarrow ^{0}_{-1}\text{e} + ^{131}_{54}\text{Xe}$

• Net effect is to change a neutron to a proton.

19BME301/Medical Physics/Dr Karthika A/AP/BME

Types of Radioactive Decay

- Gamma ray release
- Gamma ray high energy photon
 - Examples

$$^{238}_{92}U \rightarrow ^{4}_{2}He + ^{234}_{90}Th + 2^{0}_{0}\gamma$$

• Net effect is no change in mass number or atomic number.

Types of Radioactive Decay

- Positron production
- Positron particle with same mass as an electron but with a positive charge (antimatter version of an electron)
 - Examples

$$^{22}_{11}Na \rightarrow ^{0}_{1}e + ^{22}_{10}Ne$$

• Net effect is to change a proton to a neutron.

19BME301/Medical Physics/Dr Karthika A/AP/BME

Types of Radioactive Decay

- Electron capture
- Inner orbital electron is captured. New nucleus formed. Neutrino and gamma ray produced

201_{80} Hg + 0_{-1} e $\rightarrow 201_{79}$ Au + v + 0_{0} γ

• Net effect is to change a proton to a neutron

Conservation of Mass Number and Charge Number

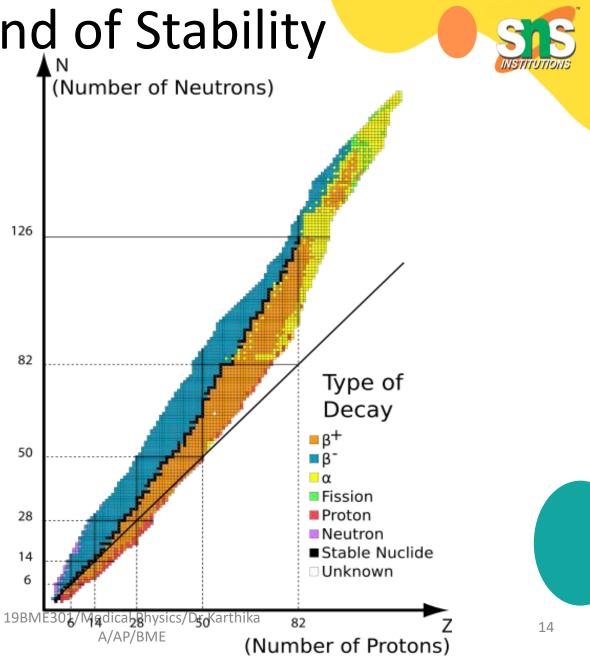
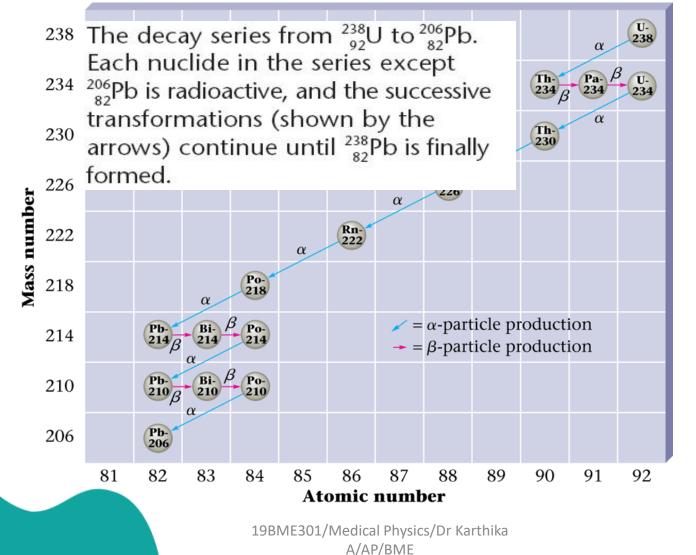

- both are retained in a nuclear reaction
- sum of both from the "reactants and products" are constant

Table 19.1 Various Types of Radioactive Processes		
β -particle (electron) production	$^{227}_{89}Ac \rightarrow ^{227}_{90}Th + ^{0}_{-1}e$	
positron production	$^{13}_{7}N \rightarrow ^{13}_{6}C + ^{0}_{1}e$	
electron capture	$^{73}_{33}$ As + $^{0}_{-1}$ e $\rightarrow ^{73}_{32}$ Ge	
α -particle production	$^{210}_{84}\text{Po} \rightarrow ^{206}_{82}\text{Pb} + ^{4}_{2}\text{He}$	
γ-ray production	excited nucleus \rightarrow ground-state nucleus $+ \frac{0}{0}$ excess energy lower energy	

Band of Stability


Black squares indicate stable nuclei. Decay occurs to move isotopes towards the black line

A. Decay Series

15

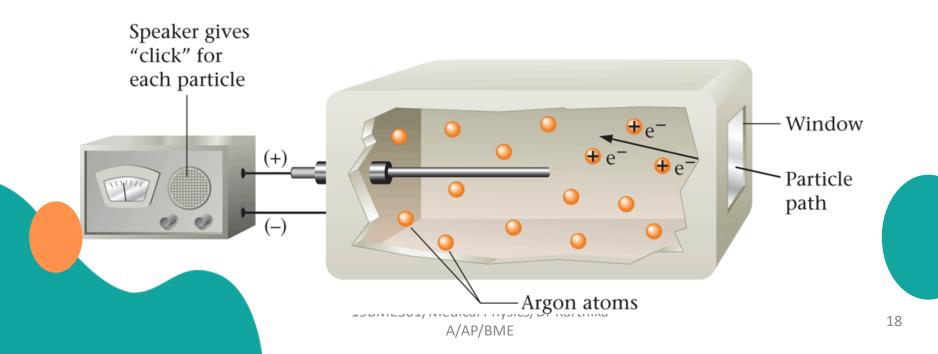
B. Nuclear Transformations

- Nuclear Transformation forced change of one element to another
- Bombard elements with particles

$$^{14}_{7}N + ^{4}_{2}He \rightarrow ^{17}_{8}O + ^{1}_{1}H$$

$$^{27}_{13}Al + ^{4}_{2}He \rightarrow ^{30}_{15}P + ^{1}_{0}n$$

Transuranium elements – elements with atomic numbers greater than 92 which have been synthesized


Syntheses of Some of	f the Transuranium Elements	
Neutron Bombardment	neptunium ($Z = 93$)	$^{238}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{239}_{92}$ U $\rightarrow ^{239}_{93}$ Np + $^{0}_{-1}$ e
	americium ($Z = 95$)	${}^{239}_{94}Pu + 2 {}^{1}_{0}n \rightarrow {}^{241}_{94}Pu \rightarrow {}^{241}_{95}Am + {}^{0}_{-1}e$
Positive-ion Bombardment	curium ($Z = 96$)	$^{239}_{94}$ Pu + $^{4}_{2}$ He $\rightarrow ^{242}_{96}$ Cm + $^{1}_{0}$ n
	californium ($Z = 98$)	$^{242}_{96}Cm + {}^{4}_{2}He \rightarrow {}^{245}_{98}Cf + {}^{1}_{0}n \text{ or}$
		${}^{238}_{92}\text{U} + {}^{12}_{6}\text{C} \rightarrow {}^{246}_{98}\text{Cf} + 4 {}^{1}_{0}\text{n}$
	rutherfordium ($Z = 104$)	$^{249}_{98}Cf + {}^{12}_{6}C \rightarrow {}^{257}_{104}Rf + 4 {}^{1}_{0}n$
	dubnium ($Z = 105$)	$^{249}_{98}Cf + {}^{15}_{7}N \rightarrow {}^{260}_{105}Db + 4 {}^{1}_{0}n$
	seaborgium ($Z = 106$)	$^{249}_{98}Cf + {}^{18}_{8}O \rightarrow {}^{263}_{106}Sg + 4 {}^{1}_{0}n$

UUO

C. Detection of Radioactivity and the Concept of Half-life

• Geiger-Muller counter – instrument which measures radioactive decay by registering the ions and electrons produced as a radioactive particle passes through a gas-filled chamber

C. Detection of Radioactivity and the Concept of Halflife

Scintillation counter

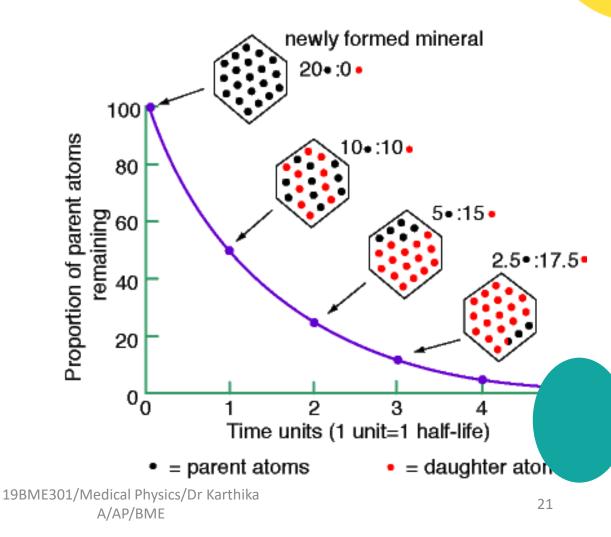
instrument which measures the rate of radioactive decay by sensing flashes of light that the radiation produces in the detector

19BME301/Medical Physics/Dr Karthika A/AP/BME

C. Detection of Radioactivity and the Concept of Halflife Table 19.3

 Half-life – time required for half of the original sample of radioactive nuclides to decay

The Half-lives for Some of the Radioactive Nuclides of Radium Nuclide Half-life ²²³₈₈Ra 12 days ²²⁴₈₈Ra 3.6 days ²²⁵₈₈Ra 15 days ²²⁶₈₈Ra 1600 years 228₈₈Ra 6.7 years


19BME301/Medical Physics/D A/AP/BME

Decay of a Radioactive Element

Half of the radioactive parent atoms decay after one half-life. Half of the remainder decay after another half-life and so on......

Thank You