

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

16EC231 – DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 2 – COMBINATIONAL CIRCUITS

TOPIC 6 - Multiplexer

What is a Multiplexer?

 \geq Multiplexer is a combinational circuit that has maximum of 2n data inputs, 'n' selection lines and single output line.

 \succ One of these data inputs will be connected to the output based on the values of selection lines.

>4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output Y.

MULTIPLEXER /19ECB231/ DIGITAL ELECTRONICS /RAMYA.E/ECE/SNSCT

- Y

>One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines.

Selectio	on Lines	
S ₁	S ₀	
0	0	
0	1	
1	0	
1	1	

Output	
Υ	
I ₀	
l ₁	
l ₂	
l ₃	

>We can implement this Boolean function using Inverters, AND gates & OR gate.

➤We require two 4x1 Multiplexers in first stage in order to get the 8 data inputs.

>Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one output Y

s	election Input	s	Outp
S ₂	S ₁	S ₀	Y
0	0	0	I ₀
0	0	1	l ₁
0	1	0	l ₂
0	1	1	l ₃
1	0	0	I ₄
1	0	1	I ₅
1	1	0	I ₆
1	1	1	I ₇

➢We require two 8x1 Multiplexers in first stage in order to get the 16 data inputs.

>16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one output Y.

	Selectio	on Inputs		Output
S ₃	S ₂	S ₁	S ₀	Y
0	0	0	0	I _O
0	0	0	1	I ₁
0	0	1	0	I ₂
0	0	1	1	l ₃
0	1	0	0	I ₄
0	1	0	1	I ₅
0	1	1	0	I ₆
0	1	1	1	I ₇
1	0	0	0	I ₈

Advantages

Advantages :

- 1) It reduces number of wires.
- It reduces circuit complexity and cost. 2)
- We can implement many combination circuits using MUX. 3)
- It does not need K maps and simplification. 4)

Disadvantages

Disadvantages:

- Added delays in switching ports. 1)
- Limitations on which ports can be used simultaneously. 2)
- Added firmware complexity to handle switching ports. 3)
- Added delays in I/O signals propagating through the 4) multiplexer.
- 5) Extra I/O ports required to control the multiplexer.

Typical Application of a MUX

MULTIPLEXER /19ECB231/ DIGITAL ELECTRONICS /RAMYA.E/ECE/SNSCT

12/16

ASSESSMENTS

1.What is Multiplexer? 2.Design 8:1 Multiplexer. 3.List the applications of multiplexer.

THANK YOU

