

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+'+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB204 – LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

UNIT 1 – FUNDAMENTALS OF OPAMP

TOPIC 1 – Introduction to Opamp

Guess?????

Intro to OPAMP/19ECB202-LDC/R.Prabha/ECE/SNSCT

Why?

Op-amp stands for operational amplifier.

Op-amps were so named because they were used to model the basic mathematical operations of addition, integration, differentiation, etc. in electronic analog computers. In this sense a true operational amplifier is an ideal circuit element.

• A circuit that does adding or subtracting depends on a control signal.

subtraction,

What?

QAn operational amplifier is an integrated circuit that can amplify weak electric signals.

- **D**An operational amplifier (often op amp or opamp) is a DChigh-gain electronic voltage **amplifier** coupled a **differential** input and, usually, a single-ended output.
- An operational amplifier has two input pins and one output pin. Its basic role is to amplify and output the voltage difference between the two input pins.

with

An Operational Amplifier is basically a three-terminal device which consists of two high impedance inputs

>One of the inputs is called the **Inverting Input**, marked with a negative or "minus" sign, (-)

> The other input is called the **Non-inverting Input**, marked with a positive or "plus" sign (+)

 \triangleright A third terminal represents the operational amplifiers output port which can both sink and source either a voltage or a current.

Op Amp Pin diagram

There are 8 pins in a common OP-AMP,

- ✓ Pin1: offset null.
- \checkmark Pin2: inverting input terminal.
- ✓ Pin3: non-inverting input terminal.
- ✓ Pin4: -VCC (negative supply).
- ✓ Pin5: offset null.
- ✓ Pin6: output voltage.
- ✓ Pin7: + VCC(positive supply).
- $\checkmark Pin8: No connection.$

741 IC - Op Amp

The 741 Op Amp IC is a monolithic integrated circuit, comprising of a general purpose Operational Amplifier

≻It was first manufactured by Fairchild semiconductors in the year 1963. ► The number 741 indicates this operational amplifier IC has 7 functional pins, 4 pins capable of taking input and 1 output pin.

that

Activity

In class activity

		L	X	0	∕∕
\mathbf{Q}	\bigcirc			×	A
	\mathbf{M}			()	Y ?
		\bigcirc	AXA	Ô.	\bigotimes
			Ø	ಶಿ	EST# 1/5#
Y	×	0000	1		Ś

Intro to OPAMP/19ECB202-LDC/R.Prabha/ECE/SNSCT

- ≻Infinite input impedance
- ➢Zero output impedance
- ➤Zero noise contribution
- ➢Zero DC output offset
- ≻Infinite bandwidth

 \blacktriangleright An ideal op amp is an op amp that has perfect conditions to allow it to function as an op amp with 100% efficiency.

1.Open-loop voltage gain

- Open-Loop Gain Avol is the gain of the op-amp without positive or negative feedback
- In the ideal op-amp Avol is infinite
- Typical values range from 20,000 to 200,000 in real devices

2. Infinite input impedance

 $Z_{in} = \frac{v_{in}}{\cdot}$

 \blacktriangleright Input impedance is the ratio of input voltage to input current

When Zin is infinite, the input current Iin=0

 \succ High-grade op-amps can have input impedance in the T Ω range Some low-grade op-amps, on the other hand, can have mA input currents

3. Zero output impedance

 \succ The ideal op-amp acts as a perfect internal voltage source with no internal resistance

 \succ This internal resistance is in series with the load, reducing the output voltage available to the load

 \triangleright Real op-amps have output-impedance in the 100-20 Ω range

4. Zero noise contribution

 \succ In the ideal op-amp, zero noise voltage is produced internally This is, any noise at the output must have been at the input as well > Practical op-amp are affected by several noise sources, such as resistive and semiconductor noise

 \succ These effects can have considerable effects in low signal-level applications

5. Zero DC output offset

The output offset is the output voltage of an amplifier when both inputs are grounded
 The ideal op-amp has zero output offset, but real op-amps have some amount of output offset voltage

6. Infinite bandwidth

The ideal op-amp will amplify all signals from DC to the highest AC frequencies
In real op amps, the bandwidth is limited by the Gain-Bandwidth product (GB), which is equal to the frequency where the amplifier gain becomes unity

➢ In the 741 family, have very limited bandwidth of up to a few KHz

Assessment

1.An ideal OP-AMP is an

(a) Current controlled Current source

(c)Voltage controlled Voltage source

(b).Current controlled Voltage source

(d)Voltage controlled Current source

Answer: (c)**Voltage controlled Voltage source**

2.A filter that provides a constant output from dc up to a cutoff frequency and passes no

signal above that frequency is called a ______ filter.

(a) low pass filter (b) high pass filter

(c) band pass filter (d) band stop filter

Answer: (a) low pass filter

THANK YOU

10/7/2023

Intro to OPAMP/19ECB202-LDC/R.Prabha/ECE/SNSCT

