

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**

19ECT201 - ELECTRICAL ENGINEERING & INSTRUMENTATION

II YEAR/ III SEMESTER

UNIT 2 – TRANSFORMER

TOPIC 6 – SUMMARY OF UNIT-II(TRANSFORMER)

INTRODUCTION- SINGLE PHASE TRANSFORMER CONSTRUCTION/19ECT201-EEI/S.KAVIPRIYA/AP-ECE/SNSCT

ICATION ENGINEERING

IDEAL TRANSFORMER ON NO LOAD

In is divided as In - Worning Component Current or Active Current. I'M - Magnetizing Current or reachine Current. V1 - Supply voltage E1, E2 = Rme value of princing & Secondary voltage.

No load amont 2 6 10% of rated amont open Io - NO load ament osses ! * COVE LOSS * Copper 1031 In secondary-0 & will be lesson in privary windig

IDEAL TRANSFORMER ON NO LOAD

From the photor diagram Costo = Iw \therefore Io = $\int I_{W}^{2} + I_{H}^{2}$

IDEAL TRANSFORMER ON LOAD

INTRODUCTION-SINGLE PHASE TRANSFORMER CONSTRUCTION/19ECT201-EEI/S.KAVIPRIYA/AP-ECE/SNSCT

4/14

Where,

R₁ = Primary Winding Resistance.

R₂= Secondary winding Resistance.

I₀= No-load current.

 I_{μ} = Magnetizing Component,

Iw = Working Component,

 \succ Transferring resistance or reactance from primary to secondary, multiply it by K² \succ Transferring resistance or reactance from secondary to primary, divide it by K² > Transferring voltage or current from one winding to other, only K is used By EMF Eqn

$$\frac{\mathrm{E}_2}{\mathrm{E}_1} = \frac{\mathrm{N}_2}{\mathrm{N}_1} = \mathrm{K}$$

SIMPLIFIED EQUIVALENT CIRCUIT OF TRANSFORMER

VOLTAGE REGULATION OF TRANSFORMER

The voltage regulation of a transformer is the arithmetic difference between the no – load secondary voltage (E_2) and the secondary voltage on load expressed as percentage of no – load voltage.

% R = $\frac{E2-V2}{V2}$ X100 The ratio (E2 - V2)/V2) is called per unit regulation.

$$\begin{split} E_2 &= no \ load \ secondary \ voltage = KV_1 \\ V_2 &= secondary \ voltage \ on \ load \end{split}$$
 The secondary voltage also depends on the power factor of the load

V₂<E₂ - lagging power factor - '+'ve Regulation

 $E_2 < V_2$ - leading power factor - '-'ve Regulation

EXPRESSION FOR VOLTAGE REGULATION

$$\% R = \frac{E2 - V2}{V2} X100 = \frac{Total \ voltage \ 0}{V2}$$

By using the expression of voltage drop from approximate voltage drop Total voltage drop = $I_2R_{2e} \cos \phi \pm I_2X_{2e} \sin \phi$.

Substitute in above we get

Note:

'+'ve - sign for lagging power factor '-'ve - sign for leading power factor

drop X100

11/14

EFFICIENCY OF TRANSFORMER

Efficiency of a Transformer

Like any other electrical machine, the efficiency of a transformer is defined as the ratio of output power (in watts or kW) to input power (watts or kW) i.e., Power output = power input - Total losses Power input = power output + Total losses = power output + Pi + Pcu

power output Efficiency = power input power output Efficiency = power input+Pi+Pcu Power output = $V_2I_2 \cos\phi$, Cos ϕ = load power factor Transformer supplies full load of current I2 and with terminal voltage V2 $Pcu = copper losses on full load = I_2^2 R_{2e}$

> IN ELECTRICAL MACHINE EFFICIENCY:99% IS COMMON AT SAFER OPERATING CONDITIONS

INTRODUCTION-SINGLE PHASE TRANSFORMER CONSTRUCTION/19ECT201-EEI/S.KAVIPRIYA/AP-**ECE/SNSCT**

12/14

EFFICIENCY OF TRANSFORMER

$$EFFICIENCY = \frac{V_2 I_2 \cos \phi}{V_2 I_2 \cos \phi + P_1 + I_2 R_{o2}}$$

 $V_2I_2 = VA$ rating of a transformer

This is full load efficiency and $I_2 =$ full load current. We can now find the full-load efficiency of the transformer at any p.f. without actually loading the transformer.

TRANSFORMER FAILURE RATE IN INDIA IS 20%. WERE IT SHOULD BE ONLY 4%

OPEN CIRCUIT TEST ON TRANSFORMER

Open Circuit Test on Transformer

INTRODUC TION-

OPEN AND SHORT CIRCUIT TEST OF TRANSFORMER/19ECT201-EEI/S.VIGNESHWARAN/AP-ECE/SNSCT

SHORT CIRCUIT TEST ON TRANSFORMER

Short Circuit Test on Transformer

INTRODUC TION-

OPEN AND SHORT CIRCUIT TEST OF TRANSFORMER/19ECT201-EEI/S.VIGNESHWARAN/AP-ECE/SNSCT

WHY TRANSFORMER IS RATED IN KVA?

Example:1KVA Transformer 115/230V >Numerator will be always primary > Denominator will be always secondary $V_1I_1 = V_2I_2 = VA$ 115(I₁)=1000=8.69A $230(I_2)=1000=4.347A$

INTRODUC TION-

OPEN AND SHORT CIRCUIT TEST OF TRANSFORMER/19ECT201-EEI/S.VIGNESHWARAN/AP-ECE/SNSCT

