

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++'
Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

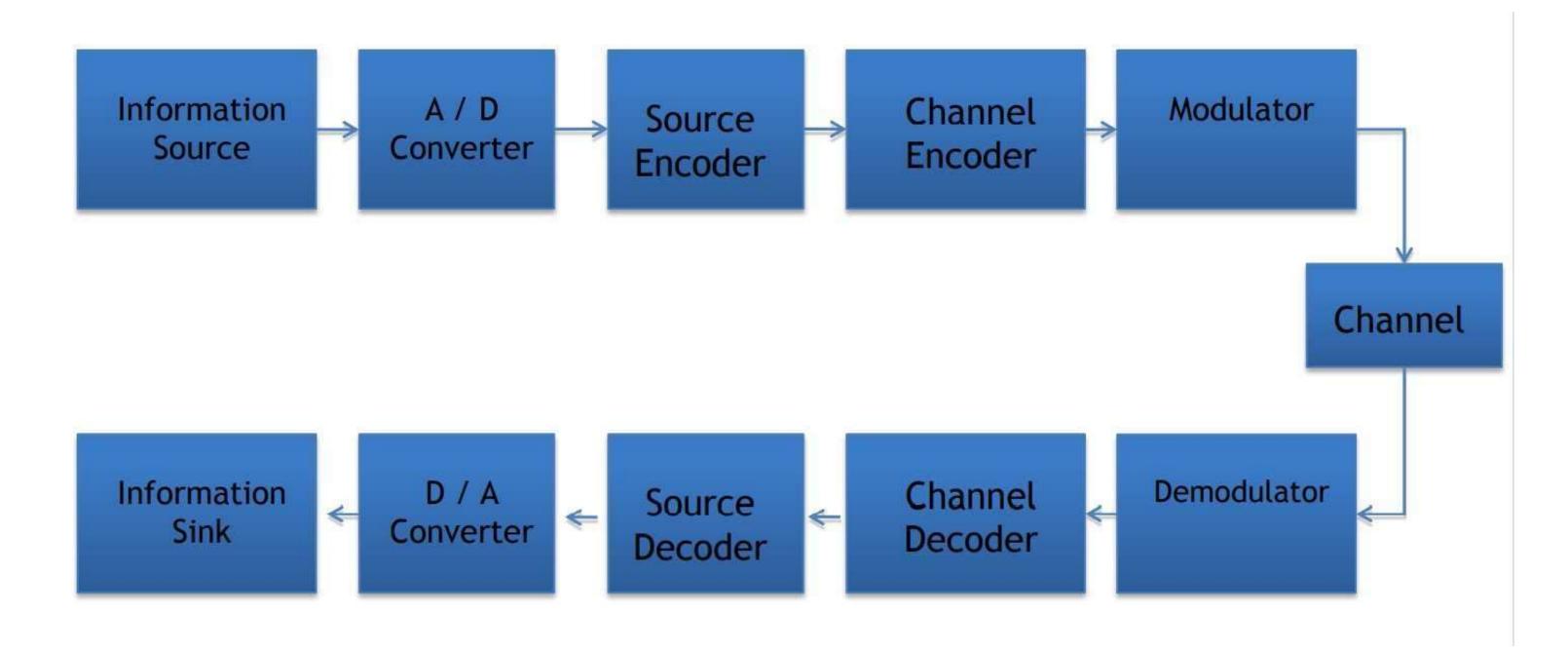
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB301-ANALOG AND DIGITAL COMMUNICATION

III YEAR/ V SEMESTER

UNIT 3 – DIGITAL COMMUNICATION

BLOCK DIAGRAM OF COMMUNICATION SYSTEMS



Block Diagram of a typical communication system

- Information source
 - Analog Data: Microphone, speech signal, image, video etc...
 - Discrete (Digital) Data: keyboard, binary numbers, hex numbers, etc...
- Analog to Digital Converter (A/D)
 - Sampling:
 - Converting continuous time signal to a digital signal
 - Quantization:
 - Converting the amplitude of the analog signal to a digital value
 - Coding:
 - Assigning a binary code to each finite amplitude

- Source encoder
 - Represent the transmitted data more efficiently and remove redundant information
 - How? "write Vs. rite"
 - Speech signals frequency and human ear "20 kHz"
 - Two types of encoding:
 - Lossless data compression (encoding)
 - Data can be recovered without any missing information
 - Lossy data compression (encoding)
 - Smaller size of data
 - Data removed in encoding can not be recovered again

- Channel encoder:
 - To control the noise and to detect and correct the errors that can occur in the transmitted data due the noise.
- Modulator:
 - Represent the data in a form to make it compatible with the channel
 - Carrier signal "high frequency signal"
- Demodulator:
 - Removes the carrier signal and reverse the process of the Modulator

- Channel decoder:
 - Detects and corrects the errors in the signal gained from the channel
- Source decoder:
 - Decompresses the data into it's original format.
- Digital to Analog Converter:
 - Reverses the operation of the A/D
 - Needs techniques and knowledge about sampling, quantization, and coding methods.
- Information Sink
 - The User

WHY SHOULD WE USE DIGITAL COMMUNICATION?

- Ease of regeneration
 - Pulses " 0 , 1"
 - Easy to use repeaters
- Noise immunity
 - Better noise handling when using repeaters that repeats the original signal
 - Easy to differentiate between the values "either 0 or 1"
- Ease of Transmission
 - Less errors
 - Faster!
 - Better productivity

WHY SHOULD WE USE DIGITAL COMMUNICATION?

- Ease of multiplexing
 - Transmitting several signals simultaneously
- Use of modern technology
 - Less cost!
- Ease of encryption
 - Security and privacy guarantee
 - Handles most of the encryption techniques

DISADVANTAGES

- The major disadvantage of digital transmission is that it requires a greater transmission bandwidth or channel bandwidth to communicate the same information in digital format as compared to analog format.
- Another disadvantage of digital transmission is that digital detection requires system synchronization, whereas analog signals generally have no such requirement.

THANK YOU