

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB231 – DIGITAL ELECTRONICS

Modulo N Counter/ 19ECB231/ DIGITAL ELECTRONICS/P.Umamaheswari /AP/ECE/SNSCT II YEAR/ III SEMESTER

UNIT 3 – SEQUENTIAL CIRCUITS

TOPIC - Modulo n Counters

Modulus Counter (MOD-N Counter)

The 2-bit counter is called as MOD-4 counter and 3-bit counter is called as MOD-8 counter. So in general, an n-bit counter is called as modulo-N counter. Where, MOD number = 2n.

- 2-bit up or down (MOD-4)
- 3-bit up or down (MOD-8)
- 4-bit up or down (MOD-16)

Step 1: Find number of flip-flops required to build the counter.

Flip-flops required are : $2^n \ge N$.

Here N = 6 : n = 3

i.e. Three flip-flops are required.

Step 2: Write an excitation table for JK flip-flop.

Q _n	Q _{n+1}	J	K
0	0	0	х
0	1	1	х
1	0	х	1
1	1	Х	0

Step 3: Determine the transition table.

Р	Present state Next state			Flip-flop inputs							
QA	Q _B	Qc	Q _{A+1}	Q _{B+1}	Q _{C+1}	JA	KA	J _B	K _B	Jc	Kc
0	0	0	0	M		-	×	0	×	1	x
	,	 	 	0	1	0	-	1	×	×	1
0	0	1	0	1	0	0	X	<u> </u>	0	1	x
0	1	0	0	1	1	0	×	×	-	-	1
0	1	1	1	0	0	1	×	×	1	X	
1	0	0	1	0	1	x	0	0	x	1	×
1	0	1	0	0	0	x	1	О	×	×	1
1	1	0	х	x	x	x	x	х	x	x	x
1	1	1	x	х	x	х	x	х	x	×	×

Step 4: K-map simplification for flip-flop inputs.

Step 5: Implement the counter.

Step 1: Find number of flip-flops required to build the counter.

Flip-flops required are : $2^n \ge N$

Here
$$N = 6$$
 :: $n = 3$

i.e. Three flip-flops are required.

Step 2: Determine the transition table.

Present state			Next state			
QA	QB	Qc	QA +1	QB+1	Qc+1	
0	0	0	0 0		1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	1	0	x	x	x	
1	1	1	x	x	x	

Step 3: K-map simplification for flip-flop inputs.

ASSESSMENTS

- 1.What is MOD N Counter?
- 2.Design MOD 5 counter using T flip flop.
- 3. Difference between synchronous and Asynchronous counter.

THANK YOU