SNS COLLEGE OF TECHNOLOGY

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

19ECB231 - DIGITAL ELECTRONICS

UNIT 3 - SEQUENTIAL CIRCUITS
TOPIC - Modulo n Counters

Modulus Counter (MOD-N Counter)

The 2-bit counter is called as MOD-4 counter and 3-bit counter is called as MOD-8 counter. So in general, an n-bit counter is called as modulo-N counter. Where, MOD number $=2 n$.

- 2-bit up or down (MOD-4)
- 3-bit up or down (MOD-8)
- 4-bit up or down (MOD-16)

Design Synchronous MOD-6 Counter Using JK flip flop

Step 1 : Find number of flip-flops required to build the counter
Flip-flops required are: $2^{n} \geq \mathrm{N}$.
Here $\mathrm{N}=6 \quad \therefore \mathrm{n}=3$
i.e. Three flip-flops are required.

Step 2 : Write an excitation table for JK flip-flop.

$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}+1}$	\mathbf{J}	\mathbf{K}
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Ste, 3 : Determine the transition table.

Design Synchronous MOD-6 Counter Using JK flip flop

Step 4 : K-map simplification for flip-flop inputs.

Step 5 : Implement the counter.

Step 1 : Find number of flip-flops required to build the counter.
Flip-flops required are : $2^{n} \geq \mathrm{N}$
Here $\mathrm{N}=6 \quad \therefore \mathrm{n}=3$
i.e. Three flip-flops are required.

Design Synchronous MOD-6 Counter Using
D flip flop

Step 2 : Determine the transition table.

Present state			Next state		
\mathbf{Q}_{A}	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{A}+1$	$\mathbf{Q}_{\mathrm{B}}+1$	$\mathbf{Q}_{\mathbf{C}}+1$
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	x	x	x
1	1	x	x	x	

Design Synchronous MOD-6 Counter Using D flip flop

Step 3 : K-map simplification for flip-flop inputs.

Design Synchronous MOD-6 Counter Using D flip flop

ASSESSMENTS

1.What is MOD N Counter?
2.Design MOD 5 counter using T flip flop.
3.Difference between synchronous and Asynchronous counter .

THANK YOU

