

Search Algorithms in AI/ Foundations of Artificial Intelligence/SNSCT

 SNS COLLEGE OF

TECHNOLOGY

 Coimbatore-35

 An Autonomous Institution

 Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 DEPARTMENT OF AI&ML

 FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

 II YEAR - III SEM

 UNIT I – Search Algorithms in AI

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Search techniques are universal problem-solving

methods.

 Rational agents or Problem-solving agents

mostly used these search strategies or algorithms

to solve a specific problem and provide the best

result.

Search Algorithm Terminologies:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Search: Searching is a step by step procedure to solve a
search-problem in a given search space. A search problem

can have three main factors:

* Search Space: Search space represents a set of possible

solutions, which a system may have.

* Start State: It is a state from where agent begins the

search.

* Goal test: It is a function which observe the current state

and returns whether the goal state is achieved or not.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Search tree: A tree representation of search problem is

called Search tree. The root of the search tree is the root

node which is corresponding to the initial state.

 Actions: It gives the description of all the available

actions to the agent.

 Transition model: A description of what each action do,

can be represented as a transition model.

 Path Cost: It is a function which assigns a numeric cost to

each path.

 Solution: It is an action sequence which leads from the

start node to the goal node.

 Optimal Solution: If a solution has the lowest cost among

all solutions.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Properties of Search Algorithms:

 Completeness: A search algorithm is said to be complete if it

guarantees to return a solution if at least any solution exists for any

random input.

 Optimality: If a solution found for an algorithm is guaranteed to be

the best solution (lowest path cost) among all other solutions, then

such a solution for is said to be an optimal solution.

 Time Complexity: Time complexity is a measure of time for an

algorithm to complete its task.

 Space Complexity: It is the maximum storage space required at any

point during the search, as the complexity of the problem.

Types of search algorithms

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Uninformed/Blind Search:

 The uninformed search does not contain any domain

knowledge such as closeness, the location of the goal.

 It operates in a brute-force way as it only includes

information about how to traverse the tree and how to

identify leaf and goal nodes

 Uninformed search applies a way in which search tree is

searched without any information about the search space

like initial state operators and test for the goal, so it is

also called blind search.

 It examines each node of the tree until it achieves the

goal node.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

It can be divided into five main types:

 Breadth-first search Uniform cost search

 Depth-first search

 Iterative deepening depth-first search

 Bidirectional Search

Informed Search

 Informed search algorithms use domain knowledge.

 In an informed search, problem information is available

which can guide the search.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Informed search strategies can find a solution more

efficiently than an uninformed search strategy.

 Informed search is also called a Heuristic search.

 A heuristic is a way which might not always be guaranteed

for best solutions but guaranteed to find a good solution in

reasonable time.

Examples

 Greedy Search or Best First Search

 A* Search

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Uninformed Search Algorithms

 Uninformed search is a class of general-purpose search algorithms which

operates in brute force-way.

 In cryptography, a brute-force attack consists of an attacker submitting many
passwords or passphrases with the hope of eventually guessing correctly. The attacker
systematically checks all possible passwords and passphrases until the correct one is
found.

 Uninformed search algorithms do not have additional information about state

or search space other than how to traverse the tree, so it is also called blind

search.

 Following are the various types of uninformed search algorithms:

1.Breadth-first Search

2.Depth-first Search

3.Depth-limited Search

4.Iterative deepening depth-first search

5.Uniform cost search

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

6.Bidirectional Search

Breadth-first Search:

 Breadth-first search is the most common search strategy for

traversing a tree or graph. This algorithm searches breadthwise in a

tree or graph, so it is called breadth-first search.

 BFS algorithm starts searching from the root node of the tree and

expands all successor node at the current level before moving to

nodes of next level.

 The breadth-first search algorithm is an example of a general-graph

search algorithm.

 Breadth-first search implemented using FIFO queue data structure.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Advantages:

 BFS will provide a solution if any solution exists.

 If there are more than one solutions for a given problem, then BFS will

provide the minimal solution which requires the least number of steps.

Disadvantage

 It requires lots of memory since each level of the tree must be saved into

memory to expand the next level.

 BFS needs lots of time if the solution is far away from the root node.

Example:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 In the below tree structure, we have shown the traversing of the tree using

BFS algorithm from the root node S to goal node K. BFS search algorithm

traverse in layers, so it will follow the path which is shown by the dotted

arrow, and the traversed path will be:

 S---> A--->B---->C--->D---->G--->H--->E---->F---->I---->K

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Time Complexity: Time Complexity of BFS algorithm can

be obtained by the number of nodes traversed in BFS until

the shallowest Node. Where the d= depth of shallowest

solution and b is a node at every state.

 T (b) = 1+b2+b3+.......+ bd= O (bd)

 Space Complexity: Space complexity of BFS algorithm is

given by the Memory size of frontier which is O(bd).

 Completeness: BFS is complete, which means if the

shallowest goal node is at some finite depth, then BFS will

find a solution.

 Optimality: BFS is optimal if path cost is a non-decreasing

function of the depth of the node.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Depth-first Search

 Depth-first search is a recursive algorithm for traversing a

tree or graph data structure.

 It is called the depth-first search because it starts from

the root node and follows each path to its greatest depth

node before moving to the next path.

 DFS uses a stack data structure for its implementation.

 The process of the DFS algorithm is similar to the BFS

algorithm.

Advantage:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 DFS requires very less memory as it only needs to store a stack of the nodes

on the path from root node to the current node.

 It takes less time to reach to the goal node than BFS algorithm (if it traverses

in the right path).

Disadvantage:

 There is the possibility that many states keep re-occurring, and there is no

guarantee of finding the solution.

 DFS algorithm goes for deep down searching and sometime it may go to the

infinite loop.

 Example:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 In the below search tree, we have shown the flow of

depth-first search, and it will follow the order as:

 Root node--->Left node ----> right node.

 It will start searching from root node S, and traverse A,

then B, then D and E, after traversing E, it will backtrack

the tree as E has no other successor and still goal node is

not found. After backtracking it will traverse node C and

then G, and here it will terminate as it found goal node.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Completeness: DFS search algorithm is complete within finite state

space as it will expand every node within a limited search tree.

 Time Complexity: Time complexity of DFS will be equivalent to the

node traversed by the algorithm. It is given by:

 T(n)= 1+ n2+ n3 +.........+ nm=O(nm)

 Where, m= maximum depth of any node and this can be much larger

than d (Shallowest solution depth)

 Space Complexity: DFS algorithm needs to store only single path from

the root node, hence space complexity of DFS is equivalent to the size

of the fringe set, which is O(bm).

 Optimal: DFS search algorithm is non-optimal, as it may generate a

large number of steps or high cost to reach to the goal node.

Depth-Limited Search Algorithm:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 A depth-limited search algorithm is similar to depth-first search with a

predetermined limit.

 Depth-limited search can solve the drawback of the infinite path in the

Depth-first search.

 In this algorithm, the node at the depth limit will treat as it has no successor

nodes further.

 Depth-limited search can be terminated with two Conditions of failure:

 *Standard failure value: It indicates that problem does not have any solution.

 *Cutoff failure value: It defines no solution for the problem within a given

depth limit.

Advantages:

 Depth-limited search is Memory efficient.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Disadvantages:

 Depth-limited search also has a disadvantage of incompleteness.

 It may not be optimal if the problem has more than one solution.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Completeness: DLS search algorithm is complete if the

solution is above the depth-limit.

 Time Complexity: Time complexity of DLS algorithm is

O(bℓ).

 Space Complexity: Space complexity of DLS algorithm is

O(b×ℓ).

Uniform-cost Search Algorithm:

 Uniform-cost search is a searching algorithm used for traversing a weighted

tree or graph.

 This algorithm comes into play when a different cost is available for each

edge.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 The primary goal of the uniform-cost search is to find a path to the goal node

which has the lowest cumulative cost.

 Uniform-cost search expands nodes according to their path costs form the

root node.

 It can be used to solve any graph/tree where the optimal cost is in demand.

 A uniform-cost search algorithm is implemented by the priority queue. It

gives maximum priority to the lowest cumulative cost.

 Uniform cost search is equivalent to BFS algorithm if the path cost of all

edges is the same

Advantages:

 Uniform cost search is optimal because at every state the path with the least

cost is chosen.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Disadvantages:

 It does not care about the number of steps involve in searching and only

concerned about path cost. Due to which this algorithm may be stuck in an

infinite loop.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Completeness:

 Uniform-cost search is complete, such as if there is a solution, UCS will find

it.

Time Complexity:

 Let C* is Cost of the optimal solution, and ε is each step to get closer to the

goal node. Then the number of steps is = C*/ε+1. Here we have taken +1, as

we start from state 0 and end to C*/ε.

 Hence, the worst-case time complexity of Uniform-cost search isO(b1 + [C*/ε])/.

Space Complexity:

 The same logic is for space complexity so, the worst-case space complexity of

Uniform-cost search is O(b1 + [C*/ε]).

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Optimal:

 Uniform-cost search is always optimal as it only selects a path with the lowest

path cost.

Iterative deepening depth-first Search:

 The iterative deepening algorithm is a combination of DFS and BFS

algorithms. This search algorithm finds out the best depth limit and

does it by gradually increasing the limit until a goal is found.

 This algorithm performs depth-first search up to a certain "depth

limit", and it keeps increasing the depth limit after each iteration

until the goal node is found.

 This Search algorithm combines the benefits of Breadth-first search's

fast search and depth-first search's memory efficiency.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 The iterative search algorithm is useful uninformed search when

search space is large, and depth of goal node is unknown.

Advantages:

 It combines the benefits of BFS and DFS search algorithm

in terms of fast search and memory efficiency.

Disadvantages:

 The main drawback of IDDFS is that it repeats all the work

of the previous phase.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Example:

 Following tree structure is showing the iterative deepening depth-first search.

IDDFS algorithm performs various iterations until it does not find the goal

node. The iteration performed by the algorithm is given as:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 1'st Iteration-----> A

2'nd Iteration----> A, B, C

3'rd Iteration------>A, B, D, E, C, F, G

In the third iteration, the algorithm will find the

goal node.

Completeness:

 This algorithm is complete is if the branching factor is finite.

Time Complexity:

 Let's suppose b is the branching factor and depth is d then the worst-case

time complexity is O(bd).

Space Complexity:

 The space complexity of IDDFS will be O(bd).

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Optimal:

 IDDFS algorithm is optimal if path cost is a non- decreasing function of the

depth of the node.

Bidirectional Search Algorithm:

 Bidirectional search algorithm runs two simultaneous

searches, one form initial state called as forward-search

and other from goal node called as backward-search, to

find the goal node.

 Bidirectional search replaces one single search graph

with two small subgraphs in which one starts the search

from an initial vertex and other starts from goal vertex.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 The search stops when these two graphs intersect each

other.

 Bidirectional search can use search techniques such as

BFS, DFS, DLS, etc.

Advantages:

 Bidirectional search is fast.

 Bidirectional search requires less memory

Disadvantages:

 Implementation of the bidirectional search tree is

difficult.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 In bidirectional search, one should know the goal state

in advance.

 In the below search tree, bidirectional search algorithm is applied.

This algorithm divides one graph/tree into two sub-graphs. It starts

traversing from node 1 in the forward direction and starts from goal

node 16 in the backward direction.

 The algorithm terminates at node 9 where two searches meet.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Completeness: Bidirectional Search is complete if we use

BFS in both searches.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Time Complexity: Time complexity of bidirectional search

using BFS is O(bd).

 Space Complexity: Space complexity of bidirectional

search is O(bd).

 Optimal: Bidirectional search is Optimal.

Informed Search Algorithms

 Informed search algorithm contains an array of knowledge

such as how far we are from the goal, path cost, how to

reach to goal node.

 This knowledge help agents to explore less to the search

space and find more efficiently the goal node.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 The informed search algorithm is more useful for large

search space.

 Informed search algorithm uses the idea of heuristic, so it

is also called Heuristic search.

 A heuristic is a way which might not always be guaranteed

for best solutions but guaranteed to find a good solution in

reasonable time.

Heuristics function

 Heuristic is a function which is used in Informed Search,

and it finds the most promising path.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 It takes the current state of the agent as its input and

produces the estimation of how close agent is from the

goal

 The heuristic method however, might not always give the

best solution, but it guaranteed to find a good solution in

reasonable time.

 Heuristic function estimates how close a state is to the

goal. It is represented by h(n), and it calculates the cost

of an optimal path between the pair of states.

 The value of the heuristic function is always positive.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Admissibility of the heuristic function is given as:

h(n) <= h*(n) h(n) is heuristic cost h*(n) is the

estimated cost

Hence heuristic cost should be less than or equal to the

estimated cost.

Pure Heuristic Search:

 Pure heuristic search is the simplest form of heuristic search

algorithms.

 It expands nodes based on their heuristic value h(n).

 It maintains two lists, OPEN and CLOSED list.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 In the CLOSED list, it places those nodes which have already

expanded OPEN list, it places nodes which have yet not been

expanded.

 On each iteration, each node n with the lowest heuristic value is

expanded and generates all its successors and n is placed to the

closed list.

 The algorithm continues unit a goal state is found.

In the informed search we will discuss two main

algorithms which are given below:

 Best First Search Algorithm(Greedy search)

 A* Search Algorithm

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Best-first Search Algorithm (Greedy Search)

 Greedy best-first search algorithm always selects the path which appears

best at that moment.

 It is the combination of depth-first search and breadth-first search

algorithms.

 It uses the heuristic function and search. Best-first search allows us to take

the advantages of both algorithms.

 With the help of best-first search, at each step, we can choose the most

promising node. In the best first search algorithm, we expand the node which

is closest to the goal node and the closest cost is estimated by heuristic

function

 The greedy best first algorithm is implemented by the priority queue.

Best first search algorithm:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Step 1: Place the starting node into the OPEN list.

 Step 2: If the OPEN list is empty, Stop and return failure.

 Step 3: Remove the node n, from the OPEN list which has the lowest value of

h(n), and places it in the CLOSED list.

 Step 4: Expand the node n, and generate the successors of node n.

 Step 5: Check each successor of node n, and find whether any node is a goal

node or not. If any successor node is goal node, then return success and

terminate the search, else proceed to Step 6.

 Step 6: For each successor node, algorithm checks for evaluation function

f(n), and then check if the node has been in either OPEN or CLOSED list. If

the node has not been in both list, then add it to the OPEN list.

 Step 7: Return to Step 2.

Advantages:

 Best first search can switch between BFS and DFS by gaining the advantages

of both the algorithms.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:

 It can behave as an unguided depth-first search in the worst case scenario.

 It can get stuck in a loop as DFS.

 This algorithm is not optimal.

Example:

 Consider the below search problem, and we will traverse it using greedy

bestfirst search. At each iteration, each node is expanded using evaluation

function f(n)=h(n) , which is given in the below table.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Expand the nodes of S and put in the CLOSED list

 Initialization: Open [A, B], Closed [S]

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Iteration 1: Open [A], Closed [S, B]

 Iteration 2: Open [E, F, A], Closed [S, B]

 : Open [E, A], Closed [S, B, F]

 Iteration 3: Open [I, G, E, A], Closed [S, B, F]

 : Open [I, E, A], Closed [S, B, F, G]

 Hence the final solution path will be: S----> B----->F---->

G

 Time Complexity: The worst case time complexity of

Greedy best first search is O(bm).

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Space Complexity: The worst case space complexity of

Greedy best first search is O(bm). Where, m is the

maximum depth of the search space.

 Complete: Greedy best-first search is also incomplete,

even if the given state space is finite.

 Optimal: Greedy best first search algorithm is not

optimal.

A* Search Algorithm

 A* search is the most commonly known form of best-first search.

 It uses heuristic function h(n), and cost to reach the node n from the start

state g(n).

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 It has combined features of UCS and greedy best-first search, by which it

solve the problem efficiently.

 A* search algorithm finds the shortest path through the search space using

the heuristic function.

 This search algorithm expands less search tree and provides optimal result

faster.

 A* algorithm is similar to UCS except that it uses g(n)+h(n) instead of g(n).

 In A* search algorithm, we use search heuristic as well as the cost to reach

the node. Hence we can combine both costs as following, and this sum is

called as a fitness number.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Algorithm of A* search:

 Step1: Place the starting node in the OPEN list.

 Step 2: Check if the OPEN list is empty or not, if the list is empty

then return failure and stops.

 Step 3: Select the node from the OPEN list which has the smallest

value of evaluation function (g+h), if node n is goal node then return

success and stop, otherwise

 Step 4: Expand node n and generate all of its successors, and put n

into the closed list. For each successor n', check whether n' is already

in the OPEN or CLOSED list, if not then compute evaluation function

for n' and place into Open list.

 Step 5: Else if node n' is already in OPEN and CLOSED, then it should

be attached to the back pointer which reflects the lowest g(n') value.

 Step 6: Return to Step 2.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Advantages:

 A* search algorithm is the best algorithm than other search algorithms.

 A* search algorithm is optimal and complete.

 This algorithm can solve very complex problems.

Disadvantages:

 It does not always produce the shortest path as it mostly based on heuristics

and approximation.

 A* search algorithm has some complexity issues.

 The main drawback of A* is memory requirement as it keeps all generated

nodes in the memory, so it is not practical for various large-scale problems.

Example:

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 In this example, we will traverse the given graph using the A* algorithm.

 The heuristic value of all states is given in the below table so we will

calculate the f(n) of each state using the formula f(n)= g(n) + h(n), where

g(n) is the cost to reach any node from start state.

 Here we will use OPEN and CLOSED list.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 Initialization: {(S, 5)}

 Iteration1: {(S--> A, 4), (S-->G, 10)}

 Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)}

 Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S-

> A-->B, 7), (S-->G, 10)}

 Iteration 4 will give the final result, as S--->A--->C--->G

it provides the optimal path with cost 6.

Points to remember:

 A* algorithm returns the path which occurred first, and it

does not search for all remaining paths.

 The efficiency of A* algorithm depends on the quality of

heuristic.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

 A* algorithm expands all nodes which satisfy the condition

f(n)

Complete:

 A* algorithm is complete as long as:

 Branching factor is finite.

 Cost at every action is fixed.

Optimal:

 A* search algorithm is optimal if it follows below two conditions:

Admissible:

 the first condition requires for optimality is that h(n) should be an admissible

heuristic for A* tree search. An admissible heuristic is optimistic in nature.

Search Algorithms in AI/ Foundations of Artificial Intelligence /SNSCT

Consistency:

 Second required condition is consistency for only A* graph-search.

 If the heuristic function is admissible, then A* tree search will always find the

least cost path.

Time Complexity:

 The time complexity of A* search algorithm depends on heuristic function,

and the number of nodes expanded is exponential to the depth of solution d.

So the time complexity is O(b^d), where b is the branching factor.

Space Complexity: The space complexity of A* search algorithm is O(b^d)

