
©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 1

Verification and Validation

Coming up: Objectives

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 2

Objectives

● To introduce software verification and validation and
to discuss the distinction between them

● To describe the program inspection process and its
role in V & V

● To explain static analysis as a verification technique

Coming up: Topics covered

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 3

Topics covered

● Verification and validation planning
● Software inspections
● Automated static analysis

Coming up: Verification vs validation

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 4

● Verification:
"Are we building the product right”.

• The software should conform to its specification.
● Validation:

 "Are we building the right product”.
• The software should do what the user really

wants.

Verification vs validation

Coming up: The V & V process

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 5

● Is a whole life-cycle process - V & V must be
applied at each stage in the software
process.

● Has two principal objectives
• The discovery of defects in a system;
• The assessment of whether or not the system is

useful and useable in an operational situation.

The V & V process

Coming up: V & V goals

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 6

V & V goals

● Verification and validation should establish
confidence that the software is fit for
purpose.

● This does NOT mean completely free of
defects.

● Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence that is
needed.

Coming up: V & V confidence

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 7

V & V confidence

● Depends on system’s purpose, user
expectations and marketing environment
• Software function

• The level of confidence depends on how critical the
software is to an organisation.

• User expectations
• Users may have low expectations of certain kinds of

software.
• Marketing environment

• Getting a product to market early may be more
important than finding defects in the program.

Coming up: IV & V: Independent Validation
and Verification

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 8

IV & V: Independent Validation
and Verification

● Can be done by another internal team or
external (other company)

developer independent
testerUnderstands the system

but, will test "gently"
and, is driven by "delivery"

Must learn about the
system,but, will attempt to break
itand, is driven by quality

Coming up: Static and dynamic verification

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 9

● Software inspections. Concerned with analysis of
the static system representation to discover
problems (static verification)

• May be supplement by tool-based document and code
analysis

● Software testing. Concerned with exercising and
observing product behaviour (dynamic verification)

• The system is executed with test data and its operational
behaviour is observed

Static and dynamic verification

Coming up: Static and dynamic V&V

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 10

● Can reveal the presence of errors NOT their
absence.

● The only validation technique for
non-functional requirements is the software
has to be executed to see how it behaves.

● Should be used in conjunction with static
verification to provide full V&V coverage.

Program testing

Coming up: Types of testing

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 11

● Defect testing
• Tests designed to discover system defects.
• A successful defect test is one which reveals the

presence of defects in a system.
• Covered in next lecture

● Validation testing
• Intended to show that the software meets its

requirements.
• A successful test is one that shows that a requirements

has been properly implemented.

Types of testing

Coming up: Testing and debugging

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 12

● Defect testing and debugging are distinct
processes.

● Verification and validation is concerned with
establishing the existence of defects in a program.

● Debugging is concerned with locating and
repairing these errors.

● Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error.

Testing and debugging

Coming up: The debugging process

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 13

The debugging process

Coming up: Debugging Techniques

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 14

Debugging Techniques

brute force

backtrackin
g
Cause elimination

When all else fails, ask for help!

Coming up: V & V planning

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 15

● Careful planning is required to get the most
out of testing and inspection processes.

● Planning should start early in the
development process.

● The plan should identify the balance between
static verification and testing.

● Test planning is about defining standards for
the testing process rather than describing
product tests.

V & V planning

Coming up: The V-model of development

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 16

The V-model of development

Coming up: The structure of a software test
plan

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 17

The structure of a software test plan

● The testing process.
● Requirements traceability.
● Tested items.
● Testing schedule.
● Test recording procedures.
● Hardware and software requirements.
● Constraints.

Coming up: The software test plan

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 18

The software test plan

Coming up: Software inspections

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 19

Software inspections

● These involve people examining the source
representation with the aim of discovering anomalies
and defects.

● Inspections do not require execution of a system so
may be used before implementation.

● They may be applied to any representation of the
system (requirements, design,configuration data,
test data, etc.).

● They have been shown to be an effective technique
for discovering program errors.

Coming up: Inspection success

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 20

Inspection success

● Many different defects may be discovered in
a single inspection. In testing, one defect
may mask another so several executions are
required.

● Reuse and programming patterns are
common so reviewers are likely to have seen
the types of error that commonly arise.

Coming up: Inspections and testing

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 21

Inspections and testing

● Inspections and testing are complementary and not
opposing verification techniques.

● Both should be used during the V & V process.
● Inspections can check conformance with a

specification but not conformance with the
customer’s real requirements.

● Inspections cannot check non-functional
characteristics such as performance, usability, etc.

Coming up: Program inspections

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 22

Program inspections

● Formalised approach to document reviews
● Intended explicitly for defect detection (not

correction).
● Defects may be logical errors, anomalies in

the code that might indicate an erroneous
condition (e.g. an uninitialised variable) or
non-compliance with standards.

Coming up: Inspection pre-conditions

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 23

Inspection pre-conditions

● A precise specification must be available.
● Team members must be familiar with the

organisation standards.
● Syntactically correct code or other system

representations must be available.
● An error checklist should be prepared.
● Management must accept that inspection will

increase costs early in the software process.
● Management should not use inspections for staff

appraisal ie finding out who makes mistakes.

Coming up: The inspection process

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 24

The inspection process

Coming up: Inspection procedure

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 25

Inspection procedure

● System overview presented to inspection
team.

● Code and associated documents are
distributed to inspection team in advance.

● Inspection takes place and discovered errors
are noted.

● Modifications are made to repair discovered
errors.

● Re-inspection may or may not be required.

Coming up: Inspection roles

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 26

Inspection checklists

● Checklist of common errors should be used to
drive the inspection.

● Error checklists are programming language
dependent and reflect the characteristic errors that
are likely to arise in the language.

● In general, the 'weaker' the type checking, the larger
the checklist.

● Examples: Initialisation, Constant naming, loop
termination, array bounds, etc.

Coming up: Inspection checks 1

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 27

Inspection checks 1

Coming up: Inspection checks 2

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 28

Inspection checks 2

Coming up: Inspection rate

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 29

Inspection rate

● 500 statements/hour during overview.
● 125 source statement/hour during individual

preparation.
● 90-125 statements/hour can be inspected.
● Inspection is therefore an expensive process.
● Inspecting 500 lines costs about 40

man/hours effort - about £2800 at UK rates.

Coming up: Automated static analysis

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 30

Automated static analysis

● Static analysers are software tools for source
text processing.

● They parse the program text and try to
discover potentially erroneous conditions and
bring these to the attention of the V & V
team.

● They are very effective as an aid to
inspections - they are a supplement to but
not a replacement for inspections.

Coming up: Static analysis checks

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 31

Static analysis checks

Coming up: Stages of static analysis

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 32

Stages of static analysis

● Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.

● Data use analysis. Detects uninitialised
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.

Coming up: Stages of static analysis

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 33

Stages of static analysis

● Information flow analysis. Identifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review

● Path analysis. Identifies paths through the
program and sets out the statements
executed in that path. Again, potentially
useful in the review process

● Both these stages generate vast amounts of
information. They must be used with care.

Coming up: LINT static analysis

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 34

LINT static analysis

Coming up: Static Analysis Tools

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 35

Static Analysis Tools

● FindBugs - Finds MANY categories of bugs
● Checkstyle - coding standard violations
● PMD - Maybe a lot more, but seems to be

mainly unused variables it seems, also
cut-n-paste code.

● Jamit - Java Access Modifier Inference Tool -
find tighter access modifiers

Coming up: Verification and formal methods

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 36

Verification and formal methods

● Formal methods can be used when a
mathematical specification of the system is
produced.

● They are the ultimate static verification
technique.

● They involve detailed mathematical analysis
of the specification and may develop formal
arguments that a program conforms to its
mathematical specification.

Coming up: Arguments for formal methods

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 37

Arguments for formal methods

● Producing a mathematical specification
requires a detailed analysis of the
requirements and this is likely to uncover
errors.

● They can detect implementation errors
before testing when the program is analyzed
alongside the specification.

Coming up: Arguments against formal
methods

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 38

Arguments against formal methods

● Require specialized notations that cannot be understood by
domain experts.

● Very expensive to develop a specification and even more
expensive to show that a program meets that specification.

● It may be possible to reach the same level of confidence in a
program more cheaply using other V & V techniques.

● Formal specification using a state transition model.
● Incremental development where the customer prioritises

increments.
● Structured programming - limited control and abstraction

constructs are used in the program.
● Static verification using rigorous inspections.
● Statistical testing of the system.

Coming up: Key points

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 39

Key points

● Verification and validation are not the same
thing. Verification shows conformance with
specification; validation shows that the
program meets the customer’s needs.

● Test plans should be drawn up to guide the
testing process.

● Static verification techniques involve
examination and analysis of the program for
error detection.

Coming up: Key points

©Ian Sommerville 2004 -- Software Engineering, 7th edition. Chapter 22 Slide 40

Key points

● Program inspections are very effective in discovering
errors.

● Program code in inspections is systematically
checked by a small team to locate software faults.

● Static analysis tools can discover program
anomalies which may be an indication of faults in the
code.

End of presentation

