
SOFTWARE DEVELOPMENT LIFE
CYCLE (SDLC)

“You’ve got to be very careful if you don’t know where
you’re going, because you might not get there.”

Yogi Berra

Capability Maturity Model
(CMM)

▪ A bench-mark for measuring the maturity of
an organization’s software process

▪ CMM defines 5 levels of process maturity
based on certain Key Process Areas (KPA)

CMM Levels
Level 5 – Optimizing (< 1%)

-- process change management
-- technology change management
-- defect prevention

Level 4 – Managed (< 5%)
-- software quality management
-- quantitative process management

Level 3 – Defined (< 10%)
-- peer reviews
-- intergroup coordination
-- software product engineering
-- integrated software management
-- training program
-- organization process definition
-- organization process focus

Level 2 – Repeatable (~ 15%)
-- software configuration

management
-- software quality

assurance
-- software project

tracking and oversight
-- software project

planning
-- requirements

management
Level 1 – Initial (~ 70%)

SDLC Model

 A framework that describes the activities
performed at each stage of a software
development project.

Waterfall Model

▪ Requirements – defines needed
information, function, behavior,
performance and interfaces.

▪ Design – data structures,
software architecture, interface
representations, algorithmic
details.

▪ Implementation – source code,
database, user documentation,
testing.

Waterfall Strengths

▪ Easy to understand, easy to use
▪ Provides structure to inexperienced staff
▪ Milestones are well understood
▪ Sets requirements stability
▪ Good for management control (plan, staff, track)
▪ Works well when quality is more important than

cost or schedule

Waterfall Deficiencies

▪ All requirements must be known upfront
▪ Deliverables created for each phase are

considered frozen – inhibits flexibility
▪ Can give a false impression of progress
▪ Does not reflect problem-solving nature of

software development – iterations of phases
▪ Integration is one big bang at the end
▪ Little opportunity for customer to preview the

system (until it may be too late)

When to use the Waterfall
Model

▪ Requirements are very well known
▪ Product definition is stable
▪ Technology is understood
▪ New version of an existing product
▪ Porting an existing product to a new platform.

High risk for new systems because of specification and
design problems.
Low risk for well-understood developments using
familiar technology.

V-Shaped SDLC Model

▪ A variant of the Waterfall
that emphasizes the
verification and validation
of the product.

▪ Testing of the product is
planned in parallel with a
corresponding phase of
development

V-Shaped Steps
▪ Project and Requirements

Planning – allocate resources

▪ Product Requirements and
Specification Analysis –
complete specification of the
software system

▪ Architecture or High-Level
Design – defines how
software functions fulfill the
design

▪ Detailed Design – develop
algorithms for each
architectural component

▪ Production, operation and
maintenance – provide for
enhancement and corrections

▪ System and acceptance
testing – check the entire
software system in its
environment

▪ Integration and Testing –
check that modules
interconnect correctly

▪ Unit testing – check that each
module acts as expected

▪ Coding – transform
algorithms into software

V-Shaped Strengths

▪ Emphasize planning for verification and
validation of the product in early stages of
product development

▪ Each deliverable must be testable
▪ Project management can track progress by

milestones
▪ Easy to use

V-Shaped Weaknesses

▪ Does not easily handle concurrent events
▪ Does not handle iterations or phases
▪ Does not easily handle dynamic changes in

requirements
▪ Does not contain risk analysis activities

When to use the V-Shaped
Model
▪ Excellent choice for systems requiring high

reliability – hospital patient control
applications

▪ All requirements are known up-front
▪ When it can be modified to handle changing

requirements beyond analysis phase
▪ Solution and technology are known

Protoyping: Basic Steps

▪ Identify basic requirements
Including input and output info
Details (e.g., security) generally ignored

▪ Develop initial prototype
UI first

▪ Review
Customers/end –users review and give feedback

▪ Revise and enhance the prototype & specs
Negotiation about scope of contract may be
necessary

Dimensions of prototyping

▪ Horizontal prototype
Broad view of entire system/sub-system
Focus is on user interaction more than low-level
system functionality (e.g. , databsae access)
Useful for:
■ Confirmation of UI requirements and system scope
■ Demonstration version of the system to obtain

buy-in from business/customers
■ Develop preliminary estimates of development

time, cost, effort

Dimensions of Prototyping

▪ Vertical prototype
More complete elaboration of a single sub-system
or function
Useful for:
■ Obtaining detailed requirements for a given function
■ Refining database design
■ Obtaining info on system interface needs
■ Clarifying complex requirements by drilling down to

actual system functionality

Types of prototyping

▪ Throwaway /rapid/close-ended prototyping
Creation of a model that will be discarded rather
than becoming part of the final delivered software
After preliminary requirements gathering, used to
visually show the users what their requirements
may look like when implemented

▪ Focus is on quickly developing the model
not on good programming practices
Can Wizard of Oz things

Fidelity of Prototype

▪ Low-fidelity
Paper/pencil
■ Mimics the functionality, but does not look like it

Fidelity of Prototype

▪ Medium to High-fidelity
GUI builder
“Click dummy” prototype – looks like the system, but
does not provide the functionality
Or provide functionality, but have it be general and not
linked to specific data

http://www.youtube.com/watch?v=VGjcFouSlpk

http://www.youtube.com/watch?v=5oLlmNbxap4&fea
ture=related

http://www.youtube.com/watch?v=VGjcFouSlpk
http://www.youtube.com/watch?v=5oLlmNbxap4&feature=related
http://www.youtube.com/watch?v=5oLlmNbxap4&feature=related

Throwaway Prototyping steps

▪ Write preliminary requirements
▪ Design the prototype
▪ User experiences/uses the prototype,

specifies new requirements
▪ Repeat if necessary
▪ Write the final requirements
▪ Develop the real products

Evolutionary Prototyping

▪ Also known as breadboard prototyping
▪ Goal is to build a very robust prototype in a

structured manner and constantly refine it
▪ The evolutionary prototype forms the heart

of the new system and is added to and
refined

▪ Allow the development team to add features
or make changes that were not conceived in
the initial requirements

Evolutionary Prototyping
Model
▪ Developers build a prototype during the

requirements phase
▪ Prototype is evaluated by end users
▪ Users give corrective feedback
▪ Developers further refine the prototype
▪ When the user is satisfied, the prototype code

is brought up to the standards needed for a
final product.

EP Steps
▪ A preliminary project plan is developed
▪ An partial high-level paper model is created
▪ The model is source for a partial requirements

specification
▪ A prototype is built with basic and critical

attributes
▪ The designer builds

the database
user interface
algorithmic functions

▪ The designer demonstrates the prototype, the
user evaluates for problems and suggests
improvements.

▪ This loop continues until the user is satisfied

EP Strengths

▪ Customers can “see” the system requirements as
they are being gathered

▪ Developers learn from customers
▪ A more accurate end product
▪ Unexpected requirements accommodated
▪ Allows for flexible design and development
▪ Steady, visible signs of progress produced
▪ Interaction with the prototype stimulates

awareness of additional needed functionality

Incremental prototyping

▪ Final product built as separate prototypes
▪ At the end, the prototypes are merged into a

final design

Extreme Prototyping

▪ Often used for web applications
▪ Development broken down into 3 phases,

each based on the preceding 1
1. Static prototype consisting of HTML pages
2. Screen are programmed and fully functional

using a simulated services layer
■ Fully functional UI is developed with little regard to

the services, other than their contract

3. Services are implemented

Prototyping advantages

▪ Reduced time and cost
Can improve the quality of requirements and
specifications provided to developers
■ Early determination of what the user really wants can

result in faster and less expensive software

▪ Improved/increased user involvement
User can see and interact with the prototype, allowing
them to provide better/more complete feedback and
specs
Misunderstandings/miscommunications revealed
Final product more likely to satisfy their desired
look/feel/performance

Disadvantages of prototyping
1

▪ Insufficient analysis
Focus on limited prototype can distract
developers from analyzing complete project
May overlook better solutions
Conversion of limited prototypes into poorly
engineered final projects that are hard to maintain
Limited functionality may not scale well if used as
the basis of a final deliverable
■ May not be noticed if developers too focused on

building prototype as a model

Disadvantages of prototyping
2

▪ User confusion of prototype and finished
system

Users can think that a prototype (intended to be
thrown away) is actually a final system that needs
to be polished
■ Unaware of the scope of programming needed to

give prototype robust functionality

Users can become attached to features included in
prototype for consideration and then removed
from final specification

Disadvantages of prototyping
3

▪ Developer attachment to prototype
If spend a great deal of time/effort to produce,
may become attached
Might try to attempt to convert a limited
prototype into a final system
■ Bad if the prototype does not have an appropriate

underlying architecture

Disadvantages of prototyping
4

▪ Excessive development time of the prototype
Prototyping supposed to be done quickly
If developers lose sight of this, can try to build a
prototype that is too complex
For throw away prototypes, the benefits realized
from the prototype (precise requirements) may
not offset the time spent in developing the
prototype – expected productivity reduced
Users can be stuck in debates over prototype
details and hold up development process

Disadvantages of prototyping
5

▪ Expense of implementing prototyping
Start up costs of prototyping may be high
Expensive to change development methodologies
in place (re-training, re-tooling)
Slow development if proper training not in place
■ High expectations for productivity unrealistic if

insufficient recognition of the learning curve

Lower productivity can result if overlook the need
to develop corporate and project specific
underlying structure to support the technology

Best uses of prototyping

▪ Most beneficial for systems that will have
many interactions with end users

▪ The greater the interaction between the
computer and the user, the greater the
benefit of building a quick system for the user
to play with

▪ Especially good for designing good
human-computer interfaces

Spiral SDLC Model

▪ Adds risk
analysis, and 4gl
RAD prototyping
to the waterfall
model

▪ Each cycle
involves the same
sequence of steps
as the waterfall
process model

Spiral Quadrant: Determine objectives,
alternatives and constraints

▪ Objectives: functionality, performance,
hardware/software interface, critical success
factors, etc.

▪ Alternatives: build, reuse, buy, sub-contract, etc.
▪ Constraints: cost, schedule, interface, etc.

Spiral Quadrant: Evaluate
alternatives, identify and resolve
risks
▪ Study alternatives relative to objectives and

constraints
▪ Identify risks (lack of experience, new

technology, tight schedules, poor process, etc.
▪ Resolve risks (evaluate if money could be lost by

continuing system development

Spiral Quadrant: Develop
next-level product

▪ Typical activites:
Create a design
Review design
Develop code
Inspect code
Test product

Spiral Quadrant: Plan next phase

▪ Typical activities
Develop project plan
Develop configuration management plan
Develop a test plan
Develop an installation plan

Spiral Model Strengths

▪ Provides early indication of insurmountable risks,
without much cost

▪ Users see the system early because of rapid
prototyping tools

▪ Critical high-risk functions are developed first
▪ The design does not have to be perfect
▪ Users can be closely tied to all lifecycle steps
▪ Early and frequent feedback from users
▪ Cumulative costs assessed frequently

Spiral Model Weaknesses

▪ Time spent for evaluating risks too large for small or
low-risk projects

▪ Time spent planning, resetting objectives, doing risk
analysis and prototyping may be excessive

▪ The model is complex
▪ Risk assessment expertise is required
▪ Spiral may continue indefinitely
▪ Developers must be reassigned during non-development

phase activities
▪ May be hard to define objective, verifiable milestones

that indicate readiness to proceed through the next
iteration

When to use Spiral Model

▪ When creation of a prototype is appropriate
▪ When costs and risk evaluation is important
▪ For medium to high-risk projects
▪ Long-term project commitment unwise because

of potential changes to economic priorities
▪ Users are unsure of their needs
▪ Requirements are complex
▪ New product line
▪ Significant changes are expected (research and

exploration)

Role Playing Game for SE’s

▪ http://www.youtube.com/watch?v=kkkl3Lucx
TY&feature=related

http://www.youtube.com/watch?v=kkkl3LucxTY&feature=related
http://www.youtube.com/watch?v=kkkl3LucxTY&feature=related

The Rise and Fall of
Waterfall
▪ http://www.youtube.com/watch?v=X1c2--sP3

o0&NR=1&feature=fvwp
▪ Warning: bad language at 3:50! (hands over

ears if easily offended!)

http://www.youtube.com/watch?v=X1c2--sP3o0&NR=1&feature=fvwp
http://www.youtube.com/watch?v=X1c2--sP3o0&NR=1&feature=fvwp

AGILE SOFTWARE DEVELOPMENT
LIFE CYCLES

Agile SDLC’s

▪ Speed up or bypass one or more life cycle
phases

▪ Usually less formal and reduced scope
▪ Used for time-critical applications
▪ Used in organizations that employ disciplined

methods

Some Agile Methods

▪ Rapid Application Development (RAD)
▪ Incremental SDLC
▪ Scrum
▪ Extreme Programming (XP)
▪ Adaptive Software Development (ASD)
▪ Feature Driven Development (FDD)
▪ Crystal Clear
▪ Dynamic Software Development Method

(DSDM)
▪ Rational Unify Process (RUP)

Agile vs Waterfall
Propaganda
▪ http://www.youtube.com/watch?v=gDDO3ob

-4ZY&feature=related

http://www.youtube.com/watch?v=gDDO3ob-4ZY&feature=related
http://www.youtube.com/watch?v=gDDO3ob-4ZY&feature=related

RAPID APPLICATION
DEVELOPMENT (RAD) MODEL

Rapid Application Model
(RAD)

▪ Requirements planning phase (a workshop
utilizing structured discussion of business
problems)
▪ User description phase – automated tools

capture information from users
▪ Construction phase – productivity tools, such

as code generators, screen generators, etc.
inside a time-box. (“Do until done”)
▪ Cutover phase -- installation of the system,

user acceptance testing and user training

Requirements Planning Phase

▪ Combines elements of the system planning
and systems analysis phases of the System
Development Life Cycle (SDLC).

▪ Users, managers, and IT staff members
discuss and agree on business needs, project
scope, constraints, and system requirements.

▪ It ends when the team agrees on the key
issues and obtains management
authorization to continue.

User Design Phase

▪ Users interact with systems analysts and
develop models and prototypes that represent all
system processes, inputs, and outputs.

▪ Typically use a combination of Joint Application
Development (JAD) techniques and CASE tools
to translate user needs into working models.

▪ A continuous interactive process that allows
users to understand, modify, and eventually
approve a working model of the system that
meets their needs.

JAD Techniques

▪ http://en.wikipedia.org/wiki/Joint_application
_design

CASE Tools
▪ http://en.wikipedia.org/wiki/Computer-aided

_software_engineering

http://en.wikipedia.org/wiki/Joint_application_design
http://en.wikipedia.org/wiki/Joint_application_design
http://en.wikipedia.org/wiki/Computer-aided_software_engineering
http://en.wikipedia.org/wiki/Computer-aided_software_engineering

Construction Phase

▪ Focuses on program and application
development task similar to the SDLC.

▪ However, users continue to participate and
can still suggest changes or improvements as
actual screens or reports are developed.

▪ Its tasks are programming and application
development, coding, unit-integration, and
system testing.

Cutover Phase

▪ Resembles the final tasks in the SDLC
implementation phase.

▪ Compared with traditional methods, the
entire process is compressed. As a result, the
new system is built, delivered, and placed in
operation much sooner.

▪ Tasks are data conversion, full-scale testing,
system changeover, user training.

RAD Strengths

▪ Reduced cycle time and improved productivity
with fewer people means lower costs

▪ Time-box approach mitigates cost and schedule
risk

▪ Customer involved throughout the complete
cycle minimizes risk of not achieving customer
satisfaction and business needs

▪ Focus moves from documentation to code
(WYSIWYG).

▪ Uses modeling concepts to capture information
about business, data, and processes.

RAD Weaknesses

▪ Accelerated development process
must give quick responses to the user
▪ Risk of never achieving closure
▪ Hard to use with legacy systems
▪ Requires a system that can be

modularized
▪ Developers and customers must be

committed to rapid-fire activities in
an abbreviated time frame.

When to use RAD

▪ Reasonably well-known requirements
▪ User involved throughout the life

cycle
▪ Project can be time-boxed
▪ Functionality delivered in increments
▪ High performance not required
▪ Low technical risks
▪ System can be modularized

Incremental SDLC Model

▪ Construct a partial
implementation of a total
system

▪ Then slowly add increased
functionality

▪ The incremental model
prioritizes requirements of
the system and then
implements them in
groups.

▪ Each subsequent release of
the system adds function
to the previous release,
until all designed
functionality has been
implemented.

Incremental Model Strengths

▪ Develop high-risk or major functions first
▪ Each release delivers an operational product
▪ Customer can respond to each build
▪ Uses “divide and conquer” breakdown of tasks
▪ Lowers initial delivery cost
▪ Initial product delivery is faster
▪ Customers get important functionality early
▪ Risk of changing requirements is reduced

Incremental Model
Weaknesses
▪ Requires good planning and design
▪ Requires early definition of a complete and

fully functional system to allow for the
definition of increments
▪ Well-defined module interfaces are

required (some will be developed long
before others)
▪ Total cost of the complete system is not

lower

When to use the Incremental
Model

▪ Risk, funding, schedule, program complexity,
or need for early realization of benefits.
▪ Most of the requirements are known up-front

but are expected to evolve over time
▪ A need to get basic functionality to the

market early
▪ On projects which have lengthy development

schedules
▪ On a project with new technology

SCRUM

Scrum:

▪ Scrum in 13 seconds:
http://www.youtube.com/watch?v=9DKM9HcRnZ
8&feature=related

▪ Scrum in 10 minutes:
http://www.youtube.com/watch?v=Q5k7a9YEoUI

▪ More scrum slides:
http://www.mountaingoatsoftware.com/system/p
resentation/file/129/Getting-Agile-With-Scrum-Co
hn-NDC2010.pdf?1276712017
Scalability of scrum addressed on slides 33-35

http://www.youtube.com/watch?v=9DKM9HcRnZ8&feature=related
http://www.youtube.com/watch?v=9DKM9HcRnZ8&feature=related
http://www.youtube.com/watch?v=Q5k7a9YEoUI
http://www.mountaingoatsoftware.com/system/presentation/file/129/Getting-Agile-With-Scrum-Cohn-NDC2010.pdf?1276712017
http://www.mountaingoatsoftware.com/system/presentation/file/129/Getting-Agile-With-Scrum-Cohn-NDC2010.pdf?1276712017
http://www.mountaingoatsoftware.com/system/presentation/file/129/Getting-Agile-With-Scrum-Cohn-NDC2010.pdf?1276712017

Scrum advantages

▪ Agile scrum helps the company in saving time
and money.

▪ Scrum methodology enables projects where
the business requirements documentation is
hard to quantify to be successfully developed.

▪ Fast moving, cutting edge developments can
be quickly coded and tested using this
method, as a mistake can be easily rectified.

Scrum advantages

▪ It is a lightly controlled method which insists
on frequent updating of the progress in work
through regular meetings. Thus there is clear
visibility of the project development.

▪ Like any other agile methodology, this is also
iterative in nature. It requires continuous
feedback from the user.

▪ Due to short sprints and constant feedback, it
becomes easier to cope with the changes.

Scrum advantages

▪ Daily meetings make it possible to measure
individual productivity. This leads to the
improvement in the productivity of each of
the team members.

▪ Issues are identified well in advance through
the daily meetings and hence can be resolved
in speedily

▪ It is easier to deliver a quality product in a
scheduled time.

Scrum advantages

▪ Agile Scrum can work with any technology/
programming language but is particularly
useful for fast moving web 2.0 or new media
projects.

▪ The overhead cost in terms of process and
management is minimal thus leading to a
quicker, cheaper result.

Scrum disadvantages

▪ Agile Scrum is one of the leading causes of
scope creep because unless there is a definite
end date, the project management
stakeholders will be tempted to keep
demanding new functionality is delivered.

▪ If a task is not well defined, estimating project
costs and time will not be accurate. In such a
case, the task can be spread over several
sprints.

▪ If the team members are not committed, the
project will either never complete or fail.

Scrum disadvantages
▪ It is good for small, fast moving projects as it

works well only with small team.
▪ This methodology needs experienced team

members only. If the team consists of people
who are novices, the project cannot be
completed in time.

▪ Scrum works well when the Scrum Master trusts
the team they are managing. If they practice too
strict control over the team members, it can be
extremely frustrating for them, leading to
demoralisation and the failure of the project.

Scrum disadvantages

▪ If any of the team members leave during a
development it can have a huge inverse effect
on the project development

▪ Project quality management is hard to
implement and quantify unless the test team
are able to conduct regression testing after
each sprint.

