
Why do we organize our pantry?

Why do we arrange the washed clothes inside the cupboard?

Why do we stack the books in the shelf?

Why do we wait in a queue to buy something and did not crowd?

All the above asked questions can be answered with only these words – “FOR EASY

RETRIEVAL”.

At times when you are in a hurry and want to obtain something, things can be retrieved

easily only when they are arranged properly. Arranging things not only saves your time but

also increases your searching efficiency. The same can be applied to computers wherein it will

be difficult to fetch the required data if the data is scattered. This is where data structures come

into play. Data Structures helps in easy access and retrieval of data by organizing the data in a

particular way.

WHAT IS DATA STRUCTURE?

Data structure is defined as the special way of storing and organizing the data in the computer
memory so that it can be used efficiently.

Need for data structures

As the amount of data increases day by day, need for data structure increases to solve several
computer – related problems

Speed

The speed with which data is processed plays a vital role in fastest retrieval and modification
of records.

Handling multiple requests

Multiple requests can be processed effectively with the help of data structures.

Consider two different persons are performing two different operations simultaneously at the
same time such as fetching a record and updating the data.

Data search

Searching for a particular item from a repository of huge number of items can be done
effectively with data structures.

Consider an inventory size of about 1000 items and if you want to search for a particular item,
you need to traverse through all the 1000 items which slows down the searching process.

With data structures, multiple users can handle and modify the data simultaneously.

Advantages

The following are some of the advantages of using data structures

Increased efficiency

Why do we need to organize the data? It is to increase efficiency. Efficiency of a system also
depends on the choice of data structure.

For example, if we want to search for an element, with array data structure it takes more time
as the elements are stored sequentially whereas it takes less time in case of other data structures
such as binary search trees or hash tables.

Reusability

The data structures can be reused. Once the data structure has been implemented, it can be
reused later.

Data abstraction

The implementation details of the data structure are hidden from the user. The user can enjoy
what the data structure provides without knowing the implementation details.

Data structure classification& types

Data structure can be classified as Primitive and Non – Primitive data structures. Non-Primitive
data structures are further subdivided into two broad categories namely

 Linear data structure
 Non – Linear data structure

Linear data structure

When all the elements are arranged in a sequential order, the data structure is called as linear
data structure. Since all the elements are stored in a non – hierarchical way, each element has

a successor and predecessor to it. The linear data structure can be represented in two ways
inside a memory

 Arrays – representing the elements using linear memory location
 Linked list – representing the elements using pointers or links

The various types of linear data structures are

 Array
 Linked list
 Stack
 Queue

Array

Array is a collection of similar data items where each item represents the element of an array.
Each element in the array has a different index number called as the subscript.

Linked list

Linked list is a linear data structure that consists of collection of nodes that are stored at non –
contiguous memory location. Each node consists of data and a pointer field. The pointer
consists of items that points to the next node.

Stack

Stack is a linear data structure which is similar to stack of books. Here, both insertion and
deletion can be done only at the top.

Queue

Queue is a linear data structure which is similar to the queue in a ticket counter. Insertion is
done at the rear end whereas deletion is done at the front end.

Non-Linear data structure

Here, the elements are not stored in a sequential order. The elements in non-linear data structure
are connected with each other in a non-linear arrangement. There are two types of non-linear
data structure namely

 Trees
 Graphs

ARRAY

An array is a linear data structure where elements of similar data type are stored in a linear
fashion i.e. in a contiguous memory location.

Array can be viewed as a staircase where objects are placed in each step. Each step corresponds
to the index and each object corresponds to the element. You can identify the objects by the
steps on which they were on. Similarly the data elements in an array can be located based on
its index (position) value.

Consider if the staircase has only 10 steps. Is it possible to place an 11th object? Absolutely
NO. Similarly, an array is of fixed size and only fixed number of elements can be stored in the
given array. Also it is not possible to shrink or expand array size as similar to that of staircase.

Array can be of two types

 One-dimensional array
 Multi-dimensional array

One-dimensional array

One-dimensional array can be viewed as a row of elements where each element is stored one
after the other.

Multi-dimensional array

Multi-dimensional array is further classified as

 Two-dimensional array
 Three-dimensional array

Various operations that can be performed in an array

Random access to the elements is possible in an array. This makes it possible to access the
elements in an array based on its position. Thus, accessing an element, insertion and searching
can be done faster in an array.

 Max() - finds the maximum element in the array

array[0]=Max;
for(i=1;i<=size-1;i++)
{
If(array[i]>Max)
{
Max=array[i];
}
}
return max;

 Min() – finds the minimum element in the array

array[0]=Min;
for(i=1;i<=size-1;i++)
{
If(array[i]<Min)
{
Min=array[i];
}}
return Min;

 Search(x) – search for the given element and returns the index in which it is found
𝒇𝒐𝒓(𝒊 = 𝟎; 𝒊 < 𝒔𝒊𝒛𝒆𝒐𝒇𝒂𝒓𝒓𝒂𝒚; 𝒊 + +)

{
𝒊𝒇(𝒂𝒓𝒓𝒂𝒚[𝒊] == 𝒙)

{
𝒓𝒆𝒕𝒖𝒓𝒏 𝒊;

}
}

 Insert(x,pos) – inserts the element x at the given index
for(i=size-1;i>=pos;i--)
{
//shift elements towards the front
array[i]=array[i-1];
}
//inserts the element x at position pos
array[pos-1]=x;

 Delete(pos) – deletes the element in the position specified

 Print() / traverse() – traverse through the array and prints all the elements of the array

for(i=0;i<size_of_array;i++)
{
printf(“%d”,array[i]);
}

Advantage

Disadvantages

QUIZ
How do we change the size of an array?
ANSWER
Dynamic arrays

