GATE ECE 2016 Set 1

1. The output of the combinational circuit given below is

A
B(B+C)
C
B(C+A)
C(A+B)

GATE ECE 2015 Set 3
2. In the circuit shown, diodes $D_{1} D 1, D_{2} D 2$ and $D_{3} D 3$ are ideal, and the inputs $E_{1} E 1$, $E_{2} E 2$ and $E_{3} E 3$ are " 0 V " for logic ' 0 ' and "10 V " for logic ' 1 '. What logic gate does
the circuit represent?

A
3-input NOR gate
3-input AND gate
D
3 -input XOR gate

3. GATE ECE 2015 Set 2

In the figure shown, the output is required to be $\mathrm{Y}=\mathrm{AB}+{ }^{--} \mathrm{CC}^{--} \mathrm{DD}^{-}$. The gates G 1 and G 2 must be,

respectively,
A
NOR, OR
B
OR, NAND
C
NAND, OR
D
AND, NAND

GATE ECE 2013

4. A bulb in a staircase has two switches, one switch being at the ground floor and the other one at the first floor. The bulb can be turned ON and also can be turned OFF by any one of the switches irrespective of the state of the other switch. The logic of switching of the bulb resembles.
```
A
```

an OR gate
an XOR gate
D
a NAND gate

5. GATE ECE 2011

The output Y in the circuit be

low is always ' 1 ' when
two or more of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are ' 0 '
${ }^{\text {B }}$ two or more of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are ' 1
any odd number of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ is ' 0 '
any odd number of the inputs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ is ' 1 '

6. GATE ECE 2010

Match the logic gates in column A with their equivalents in column B.
Column A
P

P
Column B
1

Q

2

P-
3

S

4 xaroside. ρm

P-2, Q-4, R-1, S-3	B
P-4, Q-2, R-1, S-3	C
$P-2, ~ Q-4, ~ R-3, ~ S-1 ~$	D
$P-4, ~ Q-2, ~ R-3, ~ S-1 ~$	

7. For the output F to be 1 in the logic circuit shown, the input combination should be

$A=1, B=1 . C=0$	A	
$A=1, B=0, C=0$	C	
SNS COLLEGE OF TECHNOLOGY GATE QP		

$A=0, B=1 . C=0$
$A=0, B=0, C=1$

8. GATE ECE 2001

For the ring oscillator shown in the figure, the propagation delay of each inverter is 100 pico sec. What is the fundamental frequency of the oscillator output?

	A
10 MHz	B
100 MHz	
1 GHz	C
2 GHz	

9. GATE ECE 2017 Set 1

A 4-bit shift register circuit configured for right-shift operation
is $\mathrm{Din} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}, \mathrm{Din} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{D}$, is shown. If the present state of the shift register is $A B C D=1101$, the number of clock cycles required to reach the state $A B C D=1111$ is

10. GATE ECE 2014 Set 4

The output (Y) of the circuit shown in the figure is

$--\mathrm{A}+-\mathrm{B}+-{ }^{--\mathrm{CA}^{-}+\mathrm{B}^{-}+\mathrm{C}^{-}}$
$\mathrm{B}+-\mathrm{B}^{--} . \mathrm{C}+\mathrm{A} . .^{--} \mathrm{CA}+\mathrm{B}^{-} . \mathrm{C}^{-}+\mathrm{A} . \mathrm{C}^{-}$
$\stackrel{C}{--A+B+--C^{-}+B+C^{-}}$
D ${ }^{---C A B C^{-}}$

