
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE / S. VASUKI / CSE / SNSCT

Floating point numbers and operations

There are posts on representation of floating point format. The objective of this article is to provide a

brief introduction to floating point format.

The following description explains terminology and primary details of IEEE 754 binary floating-point

representation. The discussion confines to single and double precision formats.

Usually, a real number in binary will be represented in the following format,

ImIm-1…I2I1I0.F1F2…FnFn-1

Where Im and Fn will be either 0 or 1 of integer and fraction parts respectively.

A finite number can also represented by four integers components, a sign (s), a base (b), a significant

(m), and an exponent (e). Then the numerical value of the number is evaluated as

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE / S. VASUKI / CSE / SNSCT

(-1)s x m x be ________ Where m < |b|

Depending on base and the number of bits used to encode various components, the IEEE 754 standard

defines five basic formats. Among the five formats, the binary32 and the binary64 formats are single

precision and double precision formats respectively in which the base is 2.

Table – 1 Precision Representation

Precision Base Sign Exponent Significant

Single precision 2 1 8 23+1

Double precision 2 1 11 52+1

Single Precision Format:

As mentioned in Table 1 the single precision format has 23 bits for significant (1 represents implied bit,

details below), 8 bits for exponent and 1 bit for sign.

For example, the rational number 9÷2 can be converted to single precision float format as following,

9(10) ÷ 2(10) = 4.5(10) = 100.1(2)

The result said to be normalized, if it is represented with leading 1 bit, i.e. 1.001(2) x 22. (Similarly

when the number 0.000000001101(2) x 23 is normalized, it appears as 1.101(2) x 2-6). Omitting this

implied 1 on left extreme gives us the mantissa of float number. A normalized number provides more

accuracy than corresponding de-normalized number. The implied most significant bit can be used to

represent even more accurate significant (23 + 1 = 24 bits) which is called subnormal representation.

The floating point numbers are to be represented in normalized form.

The subnormal numbers fall into the category of de-normalized numbers. The subnormal representation

slightly reduces the exponent range and can’t be normalized since that would result in an exponent

which doesn’t fit in the field. Subnormal numbers are less accurate, i.e. they have less room for nonzero

bits in the fraction field, than normalized numbers. Indeed, the accuracy drops as the size of the

subnormal number decreases. However, the subnormal representation is useful in filing gaps of floating

point scale near zero.

In other words, the above result can be written as (-1)0 x 1.001(2) x 22 which yields the integer

components as s = 0, b = 2, significant (m) = 1.001, mantissa = 001 and e = 2. The corresponding single

precision floating number can be represented in binary as shown below,

http://en.wikipedia.org/wiki/IEEE_754-2008

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE / S. VASUKI / CSE / SNSCT

Where the exponent field is supposed to be 2, yet encoded as 129 (127+2) called biased exponent. The

exponent field is in plain binary format which also represents negative exponents with an encoding

(like sign magnitude, 1’s complement, 2’s complement, etc.). The biased exponent is used for the

representation of negative exponents. The biased exponent has advantages over other negative

representations in performing bitwise comparing of two floating point numbers for equality.

A bias of (2n-1 – 1), where n is # of bits used in exponent, is added to the exponent (e) to get biased

exponent (E). So, the biased exponent (E) of single precision number can be obtained as

E = e + 127

