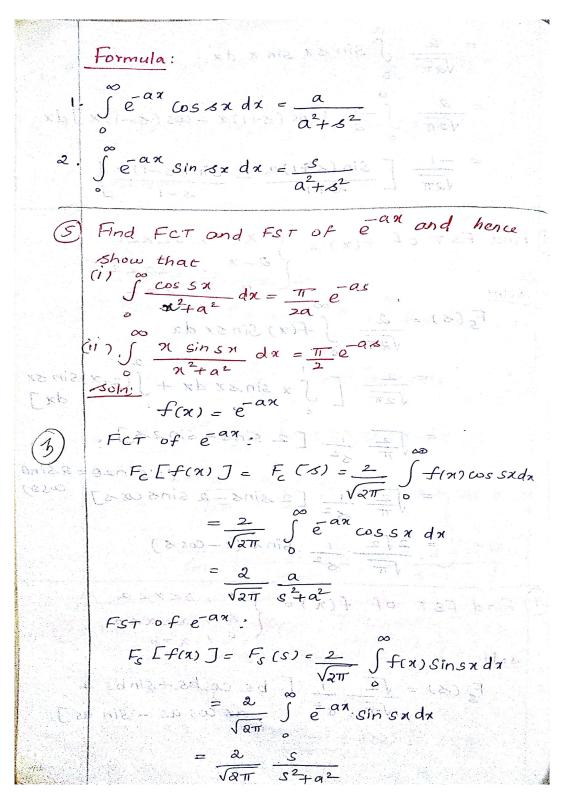




## SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

## **DEPARTMENT OF MATHEMATICS**



FOURIER TRANSFORMS



the life of the line of the li

## SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution) DEPARTMENT OF MATHEMATICS

(i) Using inverse Fourier cosine transforms,  

$$f(x) = \frac{2}{\sqrt{a\pi}} \int_{0}^{\infty} F_{c}(x) \cos \sigma x \, ds$$

$$= \frac{2}{\sqrt{a\pi}} \int_{0}^{\infty} \frac{2}{\sqrt{a\pi}} \frac{a}{\alpha^{2} + \sigma^{2}} \cos \sigma x \, ds$$

$$= \frac{2}{\sqrt{a\pi}} \int_{0}^{\infty} \frac{2}{\sqrt{a\pi}} \frac{a}{\alpha^{2} + \sigma^{2}} \cos \sigma x \, ds$$

$$= \frac{2}{\sqrt{a\pi}} \int_{0}^{\infty} \frac{2}{\sqrt{a\pi}} \frac{a}{\alpha^{2} + \sigma^{2}} \, ds$$
( $x \leftrightarrow 5$ ).  
(ii) Using inverse Fourier Sine transforms,  

$$f(x) = \frac{2}{\sqrt{a\pi}} \int_{0}^{\infty} F_{s}(s) \sin \sigma x \, ds$$

$$= \frac{e^{-ax}}{\sqrt{a\pi}} \int_{0}^{\infty} \frac{2}{\sqrt{a\pi}} \frac{s}{\sigma^{2} + a^{2}} \sin \sigma x \, ds$$

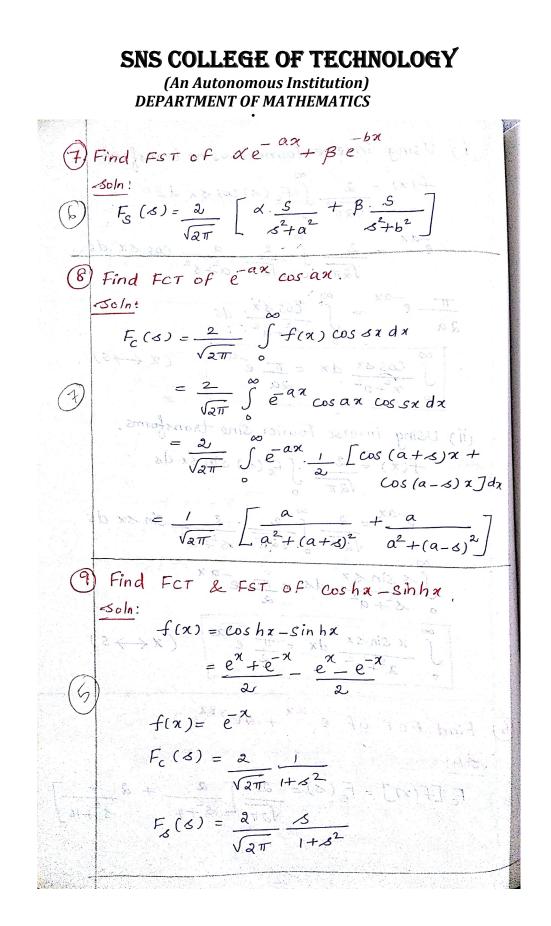
$$\int_{0}^{\infty} \frac{s \sin \sigma x}{\sigma^{2} + a^{2}} \, ds = \frac{\pi}{2} e^{-ax}$$
( $x \leftrightarrow s$ ).  
(b) Find Fert of  $e^{-2x} + 2e^{-4x}$   

$$F_{c}[f(x)] = F_{c}(\sigma) = \frac{2}{\sqrt{a\pi}} \left[ \frac{a}{\sigma^{2} + 4} + \frac{a}{\sigma^{2} + 16} \right]$$

FOURIER TRANSFORMS

Page 2







## SNS COLLEGE OF TECHNOLOGY

•

(An Autonomous Institution) DEPARTMENT OF MATHEMATICS



(\*) Evaluate 
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})^{2}}$$
  
soln:  
Take  $f(x) = e^{-ax}$   
(\*)  $F_{c}[f(x)] = F_{c}(s) = \frac{2}{\sqrt{2\pi}} \cdot \frac{a}{a^{2}+s^{2}}$   
Using passeval's identity,  
 $\int_{0}^{\infty} [f(x)]^{2} dx = \int_{0}^{\infty} [f(x)]^{2} ds$   
 $\int_{0}^{\infty} (e^{-ax})^{2} dx = \int_{0}^{\infty} [f(x)]^{2} ds$   
 $\int_{0}^{\infty} e^{-aax} dx = \int_{0}^{\infty} \frac{1}{2\sqrt{2\pi}} \cdot \frac{a^{2}}{a^{2}+s^{2}} ds$   
 $\int_{0}^{\infty} e^{-aax} dx = \int_{0}^{\infty} \frac{1}{2\sqrt{2\pi}} \cdot \frac{a^{2}}{a^{2}+s^{2}} ds$   
 $\int_{0}^{\infty} e^{-aax} dx = \int_{0}^{\infty} \frac{1}{2\sqrt{2\pi}} \cdot \frac{a^{2}}{a^{2}+s^{2}} ds$   
 $\int_{0}^{\infty} e^{-aax} dx = \int_{0}^{\infty} \frac{1}{a^{2}+s^{2}} ds$   
 $\int_{0}^{\infty} e^{-aax} dx = \int_{0}^{\infty} \frac{1}{a^{2}+s^{2}} ds$   
 $\int_{0}^{\infty} (a^{2}+a^{2})^{2} dx$   
 $f(a^{2}+a^{2})^{2} dx$   
 $f(a^{2}+a^{2})^{2} dx$   
(\*) Evaluate  $\int_{0}^{\infty} \frac{x^{2}}{(x^{2}+a^{2})^{2}} dx$   
 $f(x) = e^{ax}$   
 $f(x) = e^{ax}$ 

Using panseval's identity for Fourier  
Sine transforms,  

$$\int [f(x)]^{2} dx = \int [F_{5}(f(x))]^{2} ds$$

$$\int (e^{-\alpha x})^{2} dx = \int \frac{4}{2\pi} \cdot \frac{z^{2}}{(s^{2}+a^{2})^{2}} ds$$

$$\frac{1}{2a} \cdot \frac{\pi}{2} = \int \frac{g}{(s^{2}+a^{2})^{2}} ds$$

$$\frac{1}{2a} \cdot \frac{\pi}{2} = \int \frac{g}{(x^{2}+a^{2})^{2}} ds$$

$$\frac{1}{2a} \cdot \frac{\pi}{2} = \int \frac{g}{(x^{2}+a^{2})^{2}} ds$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{\pi}{4a}$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx = \frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})^{2}} dx$$

$$\frac{1}{2a} \cdot \frac{g}{(x^{2}+a^{2})$$

FOURIER TRANSFORMS

$$\frac{1}{3} \cdot \frac{\pi}{2} = \int_{0}^{\infty} \frac{s^{2}}{(s^{2}+4)(s^{2}+1)} ds$$

$$Put \quad s = x \implies ds = dx.$$

$$\int_{0}^{\infty} \frac{x^{2}}{(x^{2}+4)(x^{2}+1)} dx = \frac{\pi}{b}$$

$$(3) \quad \text{Evaluate} \quad \int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}$$

$$(1) \quad soln:$$

$$I = \frac{\pi}{2ab(a+b)}$$

$$(1) \quad \text{Evaluate} \quad \int_{0}^{\infty} \frac{x^{2} dx}{(x^{2}+a^{2})(x^{2}+b^{2})}$$

$$(2) \quad \text{Soln:}$$

$$I = \frac{\pi}{2(a+b)}$$

$$(3) \quad \text{Find } FST \quad of \quad \frac{\pi}{a^{2}+a^{2}}$$

$$(3) \quad \text{Find } FST \quad of \quad \frac{\pi}{a^{2}+a^{2}}$$

$$(3) \quad \text{Find } FST \quad of \quad \frac{\pi}{a^{2}+a^{2}}$$

$$(3) \quad \text{Find } FST \quad of \quad \frac{\pi}{a^{2}+a^{2}}$$

$$(3) \quad \text{Using inverse Fourier Sine transforms,}$$

$$f(x) = \frac{2}{\sqrt{2\pi}} \quad \int_{0}^{\infty} \frac{f_{S}(s) \sin sx}{(2\pi)} ds$$

$$e^{-ax} = \frac{2}{\sqrt{2\pi}} \quad \int_{0}^{\infty} \frac{s}{(2\pi)} \quad \frac{sin sx}{s^{2}+a^{2}}$$

$$e^{-ax} = \frac{4}{2\pi} \quad \int_{0}^{\infty} \frac{s}{s^{2}+a^{2}} \quad \text{Sin } sx \, ds$$

FOURIER TRANSFORMS