

SNS COLLEGE OF TECHNOLOGY

Coimbatore-37. An Autonomous Institution

COURSE NAME: 16IT301 COMPUTER NETWORKS

III YEAR/ V SEMESTER

UNIT – I Introduction to Software Engineering

Topic: Process Model- RAD Model, Evolutionary, Spiral Model

Mrs.G.Swathi
Assistant Professor
Department of Computer Science and Engineering

RAD Model

- RAD is a Rapid Application Development model.
- Using the RAD model, software product is developed in a short period of time.
- The initial activity starts with the communication between customer and developer.
- Planning depends upon the initial requirements and then the requirements are divided into groups.
- Planning is more important to work together on different modules.

Process Model

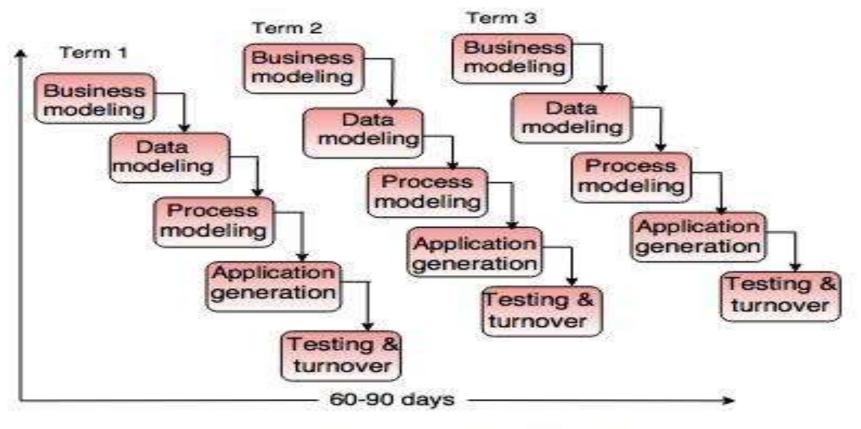


Fig. - RAD Model

Modeling Process

Business Modeling:

- Business modeling consist of the flow of information between various functions in the project.
- For example what type of information is produced by every function and which are the functions to handle that information.
- A complete business analysis should be performed to get the essential business information.

Data modeling

- The information in the business modeling phase is refined into the set of objects and it is essential for the business.
- The attributes of each object are identified and define the relationship between objects.

Modeling Process

Process modeling

- The data objects defined in the data modeling phase are changed to fulfil the information flow to implement the business model.
- The process description is created for adding, modifying, deleting or retrieving a data object.

Application generation

- In the application generation phase, the actual system is built.
- To construct the software the automated tools are used.

Testing and turnover

- The prototypes are independently tested after each iteration so that the overall testing time is reduced.
- The data flow and the interfaces between all the components are fully tested. Hence, most of the programming components are already tested.

Evolutionary Process Model

Evolutionary models are iterative. They are characterized in a manner that enables you to develop increasingly more complete versions of the software with each iteration. There are two common evolutionary process models.

- Prototyping
- The Spiral Model

Prototyping:

- Prototype is defined as first or preliminary form using which other forms are copied or derived.
- Prototype model is a set of general objectives for software.
- It does not identify the requirements like detailed input, output.
- It is software working model of limited functionality.
- In this model, working programs are quickly produced.

Evolutionary Process Model

Communication

In this phase, developer and customer meet and discuss the overall objectives of the software.

Quick design:

- Quick design is implemented when requirements are known.
- It includes only the important aspects like input and output format of the software.
- It focuses on those aspects which are visible to the user rather than the detailed plan.
- It helps to construct a prototype.

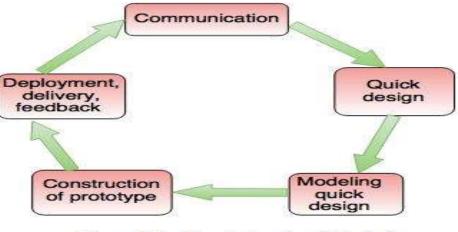


Fig. - The Prototyping Model

Evolutionary Process Model

Modeling quick design

- This phase gives the clear idea about the development of software because the software is now built.
- It allows the developer to better understand the exact requirements.

Construction of prototype: The prototype is evaluated by the customer itself.

Deployment, delivery, feedback:

- If the user is not satisfied with current prototype then it refines according to the requirements of the user.
- The process of refining the prototype is repeated until all the requirements of users are met.
- When the users are satisfied with the developed prototype then the system is developed on the basis of final prototype.

Evolutionary Process Model-Advantage

- Prototype model need not know the detailed input, output, processes, adaptability of operating system and full machine interaction.
- In the development process of this model users are actively involved.
- The development process is the best platform to understand the system by the user.
- Errors are detected much earlier.
- Gives quick user feedback for better solutions.
- It identifies the missing functionality easily. It also identifies the confusing or difficult functions

Evolutionary Process Model-Disadvantage

- . The client involvement is more and it is not always considered by the developer.
- . It is a slow process because it takes more time for development.
- . Many changes can disturb the rhythm of the development team.
- . It is a thrown away prototype when the users are confused with it.

Spiral Model

- Spiral model is a risk driven process model.
- It is used for generating the software projects.
- In spiral model, an alternate solution is provided if the risk is found in the risk analysis, then alternate solutions are suggested and implemented.
- It is a combination of prototype and sequential model or waterfall model.
- In one iteration all activities are done, for large project's the output is small.

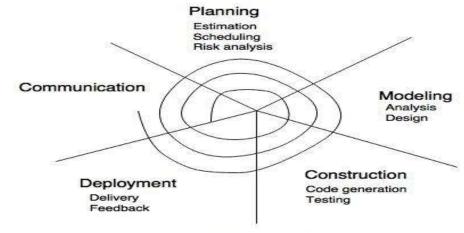


Fig. - The Spiral Model

Spiral Model-Advantage & Disadvantage

Advantages of Spiral Model

- It reduces high amount of risk.
- . It is good for large and critical projects.
- It gives strong approval and documentation control.
- . In spiral model, the software is produced early in the life cycle process.

Disadvantages of Spiral Model

- It can be costly to develop a software model.
- It is not used for small projects.

References

• Lisa Crispin, Janet Gregory, "Agile Testing; A Practical Guide for Testers and Agile Teams", Addison Wesley, 3rd Edition, 2015.

