NUMBER SYSTEM AND CODES

- The term digital refers to a process that is achieved by using discrete unit.
- In number system there are different symbols and each symbol has an absolute value and also has place value.

RADIX OR BASE:-

The radix or base of a number system is defined as the number of different digits which can occur in each position in the number system.

RADIX POINT :-

The generalized form of a decimal point is known as radix point. In any positional number system the radix point divides the integer and fractional part.
$\mathrm{N}_{\mathrm{r}}=$ [Integer part • Fractional part]

NUMBER SYSTEM:-

In general a number in a system having base or radix ' r ' can be written as

$$
a_{n} \quad a_{n-1} \quad a_{n-2} \quad \ldots \ldots \ldots \ldots \ldots . a_{0} . a_{-1} \quad a_{-2} \ldots \ldots \quad a_{-m}
$$

This will be interpreted as
$Y=a_{n} X r^{n}+a_{n-1} x r^{n-1}+a_{n-2} X r^{n-2}+\ldots \ldots \ldots+a_{0} X r^{0}+a_{-1} X r^{-1}+a_{-2} X r^{-2}+\ldots \ldots+a_{-m} \times r^{-m}$
where $\quad \mathrm{Y}=$ value of the entire number
$\mathrm{a}_{\mathrm{n}}=$ the value of the $\mathrm{n}^{\text {th }}$ digit
$r=$ radix

TYPES OF NUMBER SYSTEM:-

There are four types of number systems. They are

1. Decimal number system
2. Binary number system
3. Octal number system
4. Hexadecimal number system

DECIMAL NUMBER SYSTEM:-

- The decimal number system contain ten unique symbols $0,1,2,3,4,5,6,7,8$ and 9 .
- In decimal system 10 symbols are involved, so the base or radix is 10 .
- It is a positional weighted system.
- The value attached to the symbol depends on its location with respect to the decimal point.

In general,

$$
d_{n} \quad d_{n-1} \quad d_{n-2} \ldots \ldots \ldots \ldots \ldots . d_{0} . d_{-1} d_{-2} \ldots \ldots d_{-m}
$$

is given by
$\left(d_{n} \times 10^{n}\right)+\left(d_{n-1} \times 10^{n-1}\right)+\left(d_{n-2} \times 10^{n-2}\right)+\ldots+\left(d_{0} \times 10^{0}\right)+\left(d_{-1} \times 10^{-1}\right)+\left(d_{-2} \times 10^{-2}\right)+\ldots+\left(d_{-m} \times 10^{-m}\right)$

For example:-

$$
\begin{aligned}
9256.26 & =9 \times 1000+2 \times 100+5 \times 10+6 \times 1+2 \times(1 / 10)+6 \times(1 / 100) \\
& =9 \times 10^{3}+2 \times 10^{2}+5 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+6 \times 10^{-2}
\end{aligned}
$$

BINARY NUMBER SYSTEM:-

- The binary number system is a positional weighted system.
- The base or radix of this number system is 2 .
- It has two independent symbols.
- The symbols used are 0 and 1 .
- A binary digit is called a bit.
- The binary point separates the integer and fraction parts.

In general,

$$
d_{n} \quad d_{n-1} \quad d_{n-2} \ldots \ldots \ldots \ldots \ldots d_{0} \cdot d_{-1} d_{-2} \ldots \ldots d_{-k}
$$

is given by
$\left(d_{n} \times 2^{n}\right)+\left(d_{n-1} \times 2^{n-1}\right)+\left(d_{n-2} \times 2^{n-2}\right)+\ldots+\left(d_{0} \times 2^{0}\right)+\left(d_{-1} \times 2^{-1}\right)+\left(d_{-2} \times 2^{-2}\right)+\ldots+\left(d_{-k} \times 2^{-k}\right)$

OCTAL NUMBER SYSTEM:-

- It is also a positional weighted system.
- Its base or radix is 8 .
- It has 8 independent symbols $0,1,2,3,4,5,6$ and 7 .
- Its base $8=2^{3}$, every 3 - bit group of binary can be represented by an octal digit.

HEXADECIMAL NUMBER SYSTEM:-

- The hexadecimal number system is a positional weighted system.
- The base or radix of this number system is 16 .
- The symbols used are $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F
- The base $16=24$, every 4 - bit group of binary can be represented by an hexadecimal digit.

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER :-

1. BINARY NUMBER SYSTEM:-

(a) Binary to decimal conversion:-

In this method, each binary digit of the number is multiplied by its positional weight and the product terms are added to obtain decimal number.

For example:

(i) Convert (10101) $)_{2}$ to decimal.

Solution :

(Positional weight)
Binary number

$$
\begin{aligned}
& 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} \\
& 10101 \\
& =\left(1 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
& =16+0+4+0+1 \\
& =(21)_{10}
\end{aligned}
$$

(ii) Convert (111.101) $)_{2}$ to decimal.

Solution:

$$
\begin{aligned}
(111.101)_{2} & =\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+\left(0 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right) \\
& =4+2+1+0.5+0+0.125 \\
& =(7.625)_{10}
\end{aligned}
$$

(b)Binary to Octal conversion:-

For conversion binary to octal the binary numbers are divided into groups of 3 bits each, starting at the binary point and proceeding towards left and right.

Octal	Binary	Octal	Binary
0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

For example:
(i) Convert $(101111010110.110110011)_{2}$ into octal.

Solution :

$\begin{array}{lllllllll}\text { Group of } 3 \text { bits are } & 101 & 111 & 010 & 110 & \text {. } & 110 & 110 & 011\end{array}$
Convert each group into octal $=\begin{array}{lllllllll}5 & 7 & 2 & 6 & . & 6 & 6 & 3\end{array}$
The result is (5726.663) ${ }_{8}$
(ii) Convert (10101111001.0111$)_{2}$ into octal.

Solution :

| Binary number | 10 | 101 | 111 | 001 | . | 011 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| Group of 3 bits are | $=010$ | 101 | 111 | 001 | . | 011 | 100 |
| Convert each group into octal $=$ | 2 | 5 | 7 | 1 | . | 3 | 4 |

The result is (2571.34)8

(c) Binary to Hexadecimal conversion:-

For conversion binary to hexadecimal number the binary numbers starting from the binary point, groups are made of 4 bits each, on either side of the binary point.

Hexadecimal	Binary	Hexadecimal	Binary
	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	B	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

For example:
(i) Convert (1011011011) $)_{2}$ into hexadecimal.

Solution:

Given Binary number	10	1101	1011
Group of 4 bits are	0010	1101	1011
Convert each group into hex $=$	2	D	B

The result is (2DB) ${ }_{16}$
(ii) Convert $(01011111011.011111)_{2}$ into hexadecimal.

Solution:

Given Binary number	010	1111	1011	.	0111	11
Group of 3 bits are	$=0010$	1111	1011	.	0111	1100

Convert each group into octal $=2 \quad$ F \quad B $\quad 7 \quad 7 \quad C$
The result is (2FB.7C) ${ }_{16}$

2. DECIMAL NUMBER SYSTEM:-

(a) Decimal to binary conversion:-

In the conversion the integer number are converted to the desired base using successive division by the base or radix.
For example:
(i) Convert (52) ${ }_{10}$ into binary.

Solution:
Divide the given decimal number successively by 2 read the integer part remainder upwards to get equivalent binary number. Multiply the fraction part by 2 . Keep the integer in the product as it is and multiply the new fraction in the product by 2 . The process is continued and the integer are read in the products from top to bottom.

$$
\begin{array}{ll}
2 \underline{\underline{I} 52} & \\
2 \underline{\underline{\underline{2}}} & -0 \\
2 \underline{\underline{\underline{1} 3}} & -0 \\
2 \underline{\underline{\underline{6}}} & -1 \\
2 \underline{\underline{\underline{3}}} & -0 \\
2 \underline{\underline{\underline{1}}} & -1 \\
0 & -1
\end{array}
$$

(ii) Convert (105.15) ${ }_{10}$ into binary.

Solution:

Integer part	Fraction part
$2 \underline{\underline{105}}$	$0.15 \times 2=0.30$
$2 \underline{\underline{5}}-1$	$0.30 \times 2=0.60$
$2 \underline{\underline{2}}-0$	$0.60 \times 2=1.20$
$2 \underline{\underline{-13}}-0$	$0.20 \times 2=0.40$
$2 \underline{\underline{6}}-1$	$0.40 \times 2=0.80$
$2 \underline{\underline{3}}-0$	$0.80 \times 2=1.60$
$2 \underline{\underline{1}}-1$	
0	-1

Result of $(105.15)_{10}$ is $(\mathbf{1 1 0 1 0 0 1 . 0 0 1 0 0 1})_{2}$

(b) Decimal to octal conversion:-

To convert the given decimal integer number to octal, successively divide the given number by 8 till the quotient is 0 . To convert the given decimal fractions to octal successively multiply the decimal fraction and the subsequent decimal fractions by 8 till the product is 0 or till the required accuracy is obtained.

For example:
(i) Convert (378.93) ${ }_{10}$ into octal.

Solution:

$8 \underline{\underline{378}}$	$0.93 \times 8=7.44$	
$8 \underline{\underline{47}}-2$	$0.44 \times 8=3.52$	
$8 \underline{\underline{5}}-7$	$0.52 \times 8=4.16$	
0	-5	$0.16 \times 8=1.28$

Result of $(378.93)_{10}$ is $(\mathbf{5 7 2 . 7 3 4 1})_{8}$

(c) Decimal to hexadecimal conversion:-

The decimal to hexadecimal conversion is same as octal.
For example:
(i) Convert (2598.675) ${ }_{10}$ into hexadecimal.

Solution:

Remainder Decimal			
Hex			

Result of (2598.675) ${ }_{10}$ is (A26.ACCC) ${ }_{16}$

3. OCTAL NUMBER SYSTEM:-

(a) Octal to binary conversion:-

To convert a given a octal number to binary, replace each octal digit by its 3 - bit binary equivalent.

For example:

Convert (367.52) $)_{8}$ into binary.

Solution:

Given Octal number is

3	6	7	\cdot	5	2
$=011$	110	111	.	101	010

Result of $(367.52)_{8}$ is $(\mathbf{0 1 1 1 1 0 1 1 1 . 1 0 1 0 1 0})_{2}$

(b) Octal to decimal conversion:-

For conversion octal to decimal number, multiply each digit in the octal number by the weight of its position and add all the product terms

For example: -
Convert (4057.06) 8 to decimal

Solution:

$$
\begin{aligned}
(4057.06)_{8} & =4 \times 8^{3}+0 \times 8^{2}+5 \times 8^{1}+7 \times 8^{0}+0 \times 8^{-1}+6 \times 8^{-2} \\
& =2048+0+40+7+0+0.0937 \\
& =(2095.0937)_{10}
\end{aligned}
$$

Result is (2095.0937) ${ }_{10}$
(c) Octal to hexadecimal conversion:-

For conversion of octal to Hexadecimal, first convert the given octal number to binary and then binary number to hexadecimal.

For example :-
Convert (756.603) ${ }_{8}$ to hexadecimal.
Solution :-
Given octal no.
Convert each octal digit to binary

Convert 4 bits group to hex.

	7	5	6	.	6	0	3
$=$	111	101	110	.	110	000	011
$=$	0001	1110	1110	.	1100	0001	1000
$=$	1	E	E	.	C	1	8

Result is (1EE.C18) ${ }_{16}$

(4) HEXADECIMAL NUMBER SYSTEM :-

(a) Hexadecimal to binary conversion:-

For conversion of hexadecimal to binary, replace hexadecimal digit by its 4 bit binary group.
For example:
Convert (3A9E.BOD) ${ }_{16}$ into binary.

Solution:

Given Hexadecimal number is
Convert each hexadecimal
$=0011101010011110$. 101100001101 digit to 4 bit binary

Result of (3A9E.B0D) $)_{8}$ is $\left(\mathbf{0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 . 1 0 1 1 0 0 0 0 1 1 0 1) _ { 2 }}\right.$

(b) Hexadecimal to decimal conversion:-

For conversion of hexadecimal to decimal, multiply each digit in the hexadecimal number by its position weight and add all those product terms.

For example: -

Convert (A0F9.0EB) ${ }_{16}$ to decimal

Solution:

$$
\begin{aligned}
(\text { AOF9.0EB })_{16} & =\left(10 \times 16^{3}\right)+\left(0 \times 16^{2}\right)+\left(15 \times 16^{1}\right)+\left(9 \times 16^{0}\right)+\left(0 \times 16^{-1}\right)+\left(14 \times 16^{-2}\right)+\left(11 \times 16^{-3}\right) \\
& =40960+0+240+9+0+0.0546+0.0026 \\
& =(41209.0572)_{10}
\end{aligned}
$$

Result is (41209.0572) ${ }_{10}$

(c) Hexadecimal to Octal conversion:-

For conversion of hexadecimal to octal, first convert the given hexadecimal number to binary and then binary number to octal.

For example :-

Convert (B9F.AE) ${ }_{16}$ to octal.

Solution :-

Given hexadecimal no.is
Convert each hex. digit to binary

	B	9	F		A	E
$=$	1011	1001	1111	.	1010	1110
$=$	101	110	011	111	.	101
$=$	5	6	3	7	.	5
$=$	3	100				

Convert 3 bits group to octal.
$=5637$.
534
Result is (5637.534)8

BINARY ARITHEMATIC OPERATION :-

1. BINARY ADDITION:-

The binary addition rules are as follows
$0+0=0 ; 0+1=1 ; 1+0=1 ; 1+1=10$, i.e 0 with a carry of 1
For example :-
Add (100101) $)_{2}$ and (1101111) $)_{2}$. Solution :-

$$
\begin{array}{r}
100101 \\
+\quad 1101111 \\
\hline 10010100 \\
\hline
\end{array}
$$

Result is (10010100) ${ }_{2}$

2. BINARY SUBTRACTION:-

The binary subtraction rules are as follows
$0-0=0 ; 1-1=0 ; 1-0=1 ; 0-1=1$, with a borrow of 1

For example :-
Substract
(111.111) ${ }_{2}$ from
(1010.01)2.

Solution :-

$$
\begin{array}{r}
1010.010 \\
-\quad 111.111 \\
\hline 0010.011 \\
\hline
\end{array}
$$

Result is $(\mathbf{0 0 1 0 . 0 1 1})_{2}$

3. BINARY MULTIPLICATION:-

The binary multiplication
rules are as follows 0×0
$=0 ; 1 \times 1=1 ; 1 \times 0=0$
; $0 \times 1=0$
For example :-
Multiply (1101) ${ }_{2}$ by (110) ${ }_{2}$.
Solution :-

1101
$\times \quad$110 0000 1101
$+\quad 1101$
1001110

Result is (1001110) ${ }_{2}$

4. BINARY DIVISION:-

The binary division is very simple and similar to decimal number system. The division by ' 0 ' is meaningless. So we have only 2 rules
$0 \div 1=0$
$1 \div 1=1$
For example :-
Divide
(10110
$)_{2}$ by
$(110)_{2}$.
Soluti
on :-
110) 101101 (111.1

- 110

1010
110
1001
110 110
110
000
Result is (111.1) ${ }_{2}$

