SNS COLLEGE OF TENHNOLOGY

(AN AUTONOMOUS INSTITUTION)

Unit -II - Vector calculus

1. Find the unit normal vector to the surface $x^{3}+y^{2}-z$ at $(1,1,2)$.
2. Find the unit normal vector of the surface $x^{2}+y^{2}-z=1$ at $(1,1,1)$.
3. Find the unit vector normal to the surface $x^{2}+y^{2}=z$ at $(1,-2,5)$
4. Find the unit normal vector to $x y=z^{2}$ at $(1,1,-1)$.
5. Using Greens theorem in the plane,find the area of the circle $x^{2}+y^{2}=a^{2}$
6. Using Greens theorem evaluate $\int_{C}(x d y-y d x)$ where C is the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ in the xy plane
7. \quad Prove that $\operatorname{Curl}(\operatorname{grad} \square)=0$
8. Find $\nabla\left(\nabla \cdot\left(\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-x z\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}\right)\right)$ at the point $(1,-1,2)$.
9. Find Curl \vec{F} if $\vec{F}=x y \vec{i}+y z \vec{j}+z x \vec{k}$
10. Evaluate $\int_{c}(y z \vec{i}+x z \vec{j}+x y \vec{k}) \cdot \overrightarrow{d r}$ where C is the boundary of the surface S .
11. What is the greatest rate of $\phi=x y z^{2}$ at $(1,0,3)$.

The temperature of points in space is given by $T(x, y, z)=x^{2}+y^{2}-z$. A mosquito located (1,1,
12. 2)desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?
13. If $\vec{F}=(x+3 y) \vec{i}+(y-2 z) \vec{j}+(x+2 \mathrm{kz}) \vec{k}$ has divergence zero, find the unknown value of k .
14. State Green's theorem in a plane
15. State Stokes' theorem

PART -C

1 Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z^{2}=x^{2}+y^{2}-3$ at the point (2,-1,2).
2 Find the angle between the normals to the surfaces $x^{2}=y z$ at the points $(1,1,1)$ and $(2,4,1)$.

3 A fluid motion is given by $\vec{V}=(y+z) \vec{i}+(z+x) \vec{j}+(x+y) \vec{k}$. Is this motion is irrotational and is possible for an incompressible fluid?
If $\nabla \varphi=2 x y z^{3} \vec{i}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}$. find $\varphi(x, y, z)$ given that $\varphi(1,-2,2)=4$ those values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$. Find its scalar potential.

Find the constants a,b,c so that $\vec{F}=(x+2 y+a z) \vec{i}+(b x-3 y-z) \vec{j}-(4 x+c y+2 z) \vec{k}$ is irrotational. For those values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$. Find its scalar potential.
Show that $\vec{F}=2 x y z^{3} \vec{i}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}$ is irrotational . Find the scalar potential ϕ and $\mathrm{F}=\operatorname{grad} \phi$ Show that $\vec{F}=\left(y^{2}+2 x z^{2}\right) \vec{i}+(2 x y-z) \vec{j}+\left(2 x^{2} z-y+2 z\right) \vec{k}$ is irrotational and hence find its scalar potential
Prove that $\vec{F}=\left(\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{x}\right) \vec{i}-(2 \mathrm{xy}+\mathrm{y}) \vec{j}$ is a conservative field and find the scalar potential of \vec{F}.
Prove that $\vec{F}=\left(x^{2}-y^{2}+x\right) \vec{i}-(2 x y+y) \vec{j}$ is irrotational and hence find its scalar potential.
Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+3 x z^{2} \vec{k}$ is irrotational and find its scalar potential.
Verify Green's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}-2 x y \vec{j}$ taken around the rectangle bounded by the lines $\mathrm{x}=$ $\pm a, y=0$ and $y=b$.
Using Green's theorem in a plane $\int_{C}\left[x^{2}(1+y) d x+\left(x^{3}+y^{3}\right) d y\right]$ where C is the square formed by $x= \pm 1$ and $y= \pm 1$.
Appply Green's theorem to evaluate $\int_{c}\left(x y-x^{2}\right) d x+x^{2} y$ dy along the closed curve C formed by $y=0, x=1$ and $y=x$.
Using Greens theorem, evaluate $\int_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where C is the boundary of the triangle formed by the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}+\mathrm{y}=1$ in the xy plane.
Verify Stoke's theorem for $\vec{F}=\left(x^{2}-y^{2}\right) \vec{i}+2 x \vec{j}$, where S is the rectangle in the xy-plane formed by the lines $x=0, x=a, y=0$ and $y=b$.
Verify Stoke's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}+2 x y \vec{j}$ where S is the rectangle in the xy-plane formed by the lines $x=0, x=a, y=0, y=b$.
Verify Divergence theorem for $\vec{F}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$ taken over the cube bounded by the planes $x=0, x=a, y=0, y=a, z=0, z=a$.

Verify Gauss divergence theorem for $\vec{F}=x^{2} \dot{i}+y^{2} \vec{j}+z^{2} \vec{k}$, wher S is the surface of the cuboid formed by the planes $x=0, x=a, y=0, y=b, z=0, z=c$
Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \dot{i}+\left(y^{2}-x z\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$. and S is the surface of the rectangular parallelepiped bounded by $x=0, x=a, y=0, y=b, z=0$ and $z=c$.
Verify Gauss divergence Theorem for $\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{j}+z^{2} \vec{k}$ taken over the cube bounded by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$

Evaluate $\iint \vec{F} . \hat{n} \mathrm{dS}$ using Gauss divergence theorem for $\vec{F}=\mathrm{x}^{2} \vec{\imath}+\mathrm{y}^{2} \vec{j}+\mathrm{z}^{2} \vec{k}$ taken over the cube bounded by the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$. Find the values of constants a, b, c so that the maximum value of the directional derivative of $\varphi=a x y^{2}+b y z+c z^{2} x^{3}$ at $(1,2,-1)$ has a magnitude 64 in the direction parallel to z -axis.
Find the directional derivative of $\phi=4 x z^{2}+x^{2} y z$ at $(1,-2,1)$ in the direction of $2 \vec{i}+3 \vec{j}+4 \vec{k}$ Find ' a ' and ' b ' so that the surfaces $a x^{3}-b y^{2} z=(a+3) x^{2}$ and $4 x^{2} y-z^{3}=11$ cut orthogonally at $\left.2,-1,-3\right)$

